Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pore, Viljami

  • Google
  • 8
  • 28
  • 316

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2011Atomic Layer Deposition of GeTecitations
  • 2010Silver Coated Platinum Core–Shell Nanostructures on Etched Si Nanowires: Atomic Layer Deposition (ALD) Processing and Application in SERS13citations
  • 2009Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium158citations
  • 2009Alkylsilyl compounds of selenium and telluriumcitations
  • 2009Explosive crystallization in atomic layer deposited mixed titanium oxides43citations
  • 2007Atomic layer deposition in nanotechnology applicationscitations
  • 2007Atomic layer deposition of titanium disulfide thin films43citations
  • 2006Atomic layer deposition and properties of lanthanum oxide and lanthanum-aluminum oxide films59citations

Places of action

Chart of shared publication
Cheng, Huai-Yu
1 / 2 shared
Raoux, Simone
1 / 4 shared
Leskelä, Markku Antero
7 / 124 shared
Hatanpää, Timo Tapio
3 / 29 shared
Ritala, Mikko
8 / 194 shared
Sarnet, Tiina
1 / 6 shared
Schrott, Alejandro
1 / 1 shared
Zhu, Yu
1 / 6 shared
Sivakov, Vladimir A.
1 / 1 shared
Stelzner, Thomas
1 / 2 shared
Höflich, Katja
1 / 5 shared
Becker, Michael
1 / 6 shared
Elers, Kai-Erik
1 / 1 shared
Chrsitansen, Silke H.
1 / 1 shared
Berger, Andreas
1 / 2 shared
Järn, Mikael
1 / 5 shared
Saukkonen, Tapio
1 / 25 shared
Lautala, Markus
1 / 1 shared
Kemell, Marianna Leena
1 / 47 shared
Santala, Eero
1 / 5 shared
Pilvi, Tero
1 / 6 shared
Sajavaara, Timo
1 / 55 shared
Jones, Anthony C.
1 / 2 shared
Kukli, Kaupo
1 / 35 shared
Hegde, Rama I.
1 / 1 shared
Aspinall, Helen C.
1 / 1 shared
Gilmer, David C.
1 / 1 shared
Tobin, Philip J.
1 / 1 shared
Chart of publication period
2011
2010
2009
2007
2006

Co-Authors (by relevance)

  • Cheng, Huai-Yu
  • Raoux, Simone
  • Leskelä, Markku Antero
  • Hatanpää, Timo Tapio
  • Ritala, Mikko
  • Sarnet, Tiina
  • Schrott, Alejandro
  • Zhu, Yu
  • Sivakov, Vladimir A.
  • Stelzner, Thomas
  • Höflich, Katja
  • Becker, Michael
  • Elers, Kai-Erik
  • Chrsitansen, Silke H.
  • Berger, Andreas
  • Järn, Mikael
  • Saukkonen, Tapio
  • Lautala, Markus
  • Kemell, Marianna Leena
  • Santala, Eero
  • Pilvi, Tero
  • Sajavaara, Timo
  • Jones, Anthony C.
  • Kukli, Kaupo
  • Hegde, Rama I.
  • Aspinall, Helen C.
  • Gilmer, David C.
  • Tobin, Philip J.
OrganizationsLocationPeople

article

Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium

  • Pore, Viljami
  • Leskelä, Markku Antero
  • Hatanpää, Timo Tapio
  • Ritala, Mikko
Abstract

Atomic layer deposition (ALD) of metal selenide and telluride thin films has been limited because of a lack of precursors that would at the same time be safe and exhibit high reactivity as required in ALD. Yet there are many important metal selenide and telluride thin film materials whose deposition by ALD might be beneficial, for example, CuInSe2 for solar cells and Ge2Sb2Te5 for phase-change random-access memories. Especially in the tatter case highly conformal deposition offered by ALD is essential for high storage density. By now, ALD of germanium antimony telluride (GST) has been attempted only using plasma-assisted processes owing to the tack of appropriate tellurium precursors. In this paper we make a breakthrough in the development of new ALD precursors for tellurium and selenium. Compounds with a general formula (R3Si)(2)Te and (R3Si)(2)Se react with various metal halides forming the corresponding metal tellurides and selenides. As an example, we show that Sb2Te3, GeTe, and GST films can be deposited by ALD using (Et3Si)(2)Te, SbCl3, and GeCl2 center dot C4H8O2 compounds as precursors. All three precursors exhibit a typical saturative ALD growth behavior and GST films prepared at 90 degrees C show excellent conformality on a high aspect-ratio trench structure.

Topics
  • density
  • impedance spectroscopy
  • compound
  • phase
  • thin film
  • forming
  • random
  • atomic layer deposition
  • Germanium
  • Antimony
  • Tellurium