People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huskens, Jurriaan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Solvent Optimization Studies for a New EURO-GANEX Process with 2,2'-Oxybis(<i>N,N</i>-di-<i>n</i>-decylpropanamide) (mTDDGA) and Its Radiolysis Productscitations
- 2017Highly doped silicon nanowires by monolayer dopingcitations
- 2013Symmetric Large-Area Metal-Molecular Monolayer-Metal Junctions by Wedging Transfercitations
- 2011Local Doping of Silicon Using Nanoimprint Lithography and Molecular Monolayerscitations
- 2010Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabricationcitations
- 2010Visualizing resonance energy transfer in supramolecular surface patterns of β-CD-functionalized quantum dot hosts and organic dye guests by fluorescence lifetime imagingcitations
- 2009Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stampscitations
- 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithographycitations
- 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
Places of action
Organizations | Location | People |
---|
article
Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stamps
Abstract
Porous stamps fabricated by one-step phase separation micromolding were used for microcontact printing of polar inks, in particular aqueous solutions of dendrimers, proteins, and nanoparticles. Permanent hydrophilicity was achieved without any additional treatment by tailored choice of the polymer components. Pores with several hundred nanometers to micrometers were obtained during the phase separation process. These pores can act as ink reservoirs. The porous stamps were thoroughly characterized by SEM, NMR, and contact angle measurement. The versatility of the porous stamps was shown in three printing schemes. First, positive microcontact printing was achieved by printing a polar thioether-modified dendrimer as the ink, followed by backfilling and wet etching. Second, the porous stamps were used for multiple printing of fluorescent proteins without reinking. Third, nanoparticles of about 60 nm in diameter, which cannot be directly transferred by oxidized PDMS stamps, were successfully printed onto substrates by using these porous stamps