People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lammertink, Rob
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Streamer formation dynamics with mixed bacterial species: effects of cultivation conditions, hydrodynamics, and speciescitations
- 2024Mismatch and mix
- 2022Comparative assessment of hydrocarbon separation performance of bulky poly(urethane-urea)s toward rubbery membranescitations
- 2020Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanescitations
- 2019Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenderscitations
- 2017Fabrication of nanoporous graphene/polymer composite membranescitations
- 2015Controlled formation of anatase and rutile TiO2 thin films by reactive magnetron sputteringcitations
- 2015Intrinsic Photocatalytic Assessment of Reactively Sputtered TiO2 Filmscitations
- 2011Hollow fiber ultrafiltration membranes with microstructured inner skincitations
- 2011Carbon nanofibers in catalytic membrane microreactorscitations
- 2010Microstructured hollow fibers for ultrafiltrationcitations
- 2010Shrinkage effects during polmer phase separation on microfabricated moldscitations
- 2010Surface texturing inside ceramic macro/micro channelscitations
- 2010Polymeric microsieves via phase separation microfabricationcitations
- 2009Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stampscitations
- 2009Micropatterned polymer films by vapor-induced phase separation using permeable moldscitations
- 2007Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Currentcitations
- 2006Polymeric microsieves produced by phase separation micromoldingcitations
- 2006Superhydrophobic Surfaces Having Two-Fold Adjustable Roughness Prepared in a Single Stepcitations
- 2005New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porositycitations
- 2005Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly(ferrocenyldimethylsilane) on Goldcitations
Places of action
Organizations | Location | People |
---|
article
Microcontact Printing of Dendrimers, Proteins, and Nanoparticles by Porous Stamps
Abstract
Porous stamps fabricated by one-step phase separation micromolding were used for microcontact printing of polar inks, in particular aqueous solutions of dendrimers, proteins, and nanoparticles. Permanent hydrophilicity was achieved without any additional treatment by tailored choice of the polymer components. Pores with several hundred nanometers to micrometers were obtained during the phase separation process. These pores can act as ink reservoirs. The porous stamps were thoroughly characterized by SEM, NMR, and contact angle measurement. The versatility of the porous stamps was shown in three printing schemes. First, positive microcontact printing was achieved by printing a polar thioether-modified dendrimer as the ink, followed by backfilling and wet etching. Second, the porous stamps were used for multiple printing of fluorescent proteins without reinking. Third, nanoparticles of about 60 nm in diameter, which cannot be directly transferred by oxidized PDMS stamps, were successfully printed onto substrates by using these porous stamps