Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jiang, Jx

  • Google
  • 1
  • 8
  • 825

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Tunable organic photocatalysts for visible-light-driven hydrogen evolution825citations

Places of action

Chart of shared publication
Cooper, Andrew I.
1 / 14 shared
Zwijnenburg, Martijn A.
1 / 4 shared
Bonillo, Baltasar
1 / 1 shared
Ren, Shijie
1 / 2 shared
Guiglion, Pierre
1 / 1 shared
Adams, Dj
1 / 2 shared
Sprick, Rs
1 / 5 shared
Ratvijitvech, Thanchanok
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Cooper, Andrew I.
  • Zwijnenburg, Martijn A.
  • Bonillo, Baltasar
  • Ren, Shijie
  • Guiglion, Pierre
  • Adams, Dj
  • Sprick, Rs
  • Ratvijitvech, Thanchanok
OrganizationsLocationPeople

article

Tunable organic photocatalysts for visible-light-driven hydrogen evolution

  • Jiang, Jx
  • Cooper, Andrew I.
  • Zwijnenburg, Martijn A.
  • Bonillo, Baltasar
  • Ren, Shijie
  • Guiglion, Pierre
  • Adams, Dj
  • Sprick, Rs
  • Ratvijitvech, Thanchanok
Abstract

Photocatalytic hydrogen production from water offers an abundant, clean fuel source, but it is challenging to produce photocatalysts that use the solar spectrum effectively. Many hydrogen-evolving photocatalysts are active in the ultraviolet range, but ultraviolet light accounts for only 3% of the energy available in the solar spectrum at ground level. Solid-state crystalline photocatalysts have light absorption profiles that are a discrete function of their crystalline phase and that are not always tunable. Here, we prepare a series of amorphous, microporous organic polymers with exquisite synthetic control over the optical gap in the range 1.94-2.95 eV. Specific monomer compositions give polymers that are robust and effective photocatalysts for the evolution of hydrogen from water in the presence of a sacrificial electron donor, without the apparent need for an added metal cocatalyst. Remarkably, unlike other organic systems, the best performing polymer is only photoactive under visible rather than ultraviolet irradiation.

Topics
  • impedance spectroscopy
  • polymer
  • amorphous
  • crystalline phase
  • Hydrogen