People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ray, Santanu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Effect of γ-irradiation on ruthenium-morin nanocomposite for trace detection of Ce(IV), Ce(III) and Dy(III)citations
- 2020Effect of graphene addition on composition, morphology and corrosion behavior of ZnNiFe-graphene composite coatingscitations
- 2020Green synthesis of silver and palladium nanocomposites:a study of catalytic activity towards etherification reactioncitations
- 2020Enhancement in the corrosion resistance of nanocrystalline aluminium coatings by incorporation of graphene oxidecitations
- 2014Differentially instructive extracellular protein micro-netscitations
- 2011Wire-bar coating of semiconducting polythiophene / insulating polyethylene blend thin films for organic transistors.citations
Places of action
Organizations | Location | People |
---|
article
Differentially instructive extracellular protein micro-nets
Abstract
<p>An ability to construct biological matter from the molecule up holds promise for applications ranging from smart materials to integrated biophysical models for synthetic biology. Biomolecular self-assembly is an efficient strategy for biomaterial construction which can be programmed to support desired function. A challenge remains in replicating the strategy synthetically, that is at will, and differentially, that is for a specific function at a given length scale. Here we introduce a self-assembly topology enabling a net-like architectural mimetic of native extracellular matrices capable of differential responses to cell adhesion-enhanced mammalian cell attachment and proliferation, and enhanced resistance to bacterial colonization-at the native sub-millimeter length scales. The biological performance of such protein micro-nets directly correlates with their morphological and chemical properties, offering thus an application model for differential extracellular matrices.</p>