Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Duren, Tina

  • Google
  • 11
  • 48
  • 976

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2019Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces34citations
  • 2018Tuning the Mechanical Response of Metal−Organic Frameworks by Defect Engineering98citations
  • 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligands19citations
  • 2014Polymorphism of metal-organic frameworks47citations
  • 2014Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure71citations
  • 2013Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray Powder Diffraction Experiments181citations
  • 2006Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis234citations
  • 2005Adsorption fundamentals in metal-organic frameworks from molecular modelingcitations
  • 2004Molecular modelling of adsorption in novel nanoporous metal-organic materials126citations
  • 2004Assessment of isoreticular metal-organic frameworks for adsorption separations166citations
  • 2001Molecular modeling of adsorption in carbon nanotubescitations

Places of action

Chart of shared publication
Madrid, Elena
1 / 6 shared
Marken, Frank
1 / 91 shared
Attard, Gary A.
1 / 3 shared
Mckeown, Neil B.
1 / 21 shared
Song, Qilei
1 / 4 shared
Msayib, Kadhum J.
1 / 2 shared
Lowe, John P.
1 / 6 shared
Daisenberger, Dominik
1 / 14 shared
Dissegna, Stefano
1 / 2 shared
Fischer, Roland A.
1 / 66 shared
Hobday, Claire
1 / 3 shared
Vervoorts, Pia
1 / 4 shared
Smith, Andrew
1 / 8 shared
Kieslich, Gregor
1 / 9 shared
Llewellyn, Philip L.
2 / 8 shared
Bourelly, Sandrine
1 / 3 shared
Amabilino, Silvia
1 / 3 shared
Walton, Richard I.
1 / 34 shared
Lennox, Matthew J.
2 / 5 shared
Stevens, Thomas W.
1 / 3 shared
Millange, Franck
2 / 12 shared
Munn, Alexis S.
1 / 4 shared
Clarkson, Guy J.
1 / 12 shared
Daniels, Luke M.
1 / 6 shared
Zhu, Nianyong
1 / 1 shared
Schmitt, Wolfgang
1 / 5 shared
Ward, Kenneth
1 / 2 shared
Greenaway, Alex
1 / 2 shared
Mckellar, Scott C.
1 / 8 shared
Banu, Ana Maria
1 / 1 shared
Graham, Alexander J.
1 / 4 shared
Moggach, Stephen A.
1 / 13 shared
Mowat, John P. S.
2 / 3 shared
Wright, Paul A.
2 / 14 shared
Fairen-Jimenez, David
1 / 16 shared
Thompson, Stephen P.
1 / 7 shared
Chen, Linjiang
1 / 9 shared
Morrison, Carole A.
1 / 1 shared
Bourrelly, Sandrine
1 / 3 shared
Serre, Christian
1 / 26 shared
Férey, Gérard
1 / 2 shared
Latroche, Michel
1 / 35 shared
Surblé, Suzy
1 / 9 shared
Snurr, Randall Q.
2 / 10 shared
Frost, Houston
1 / 1 shared
Sarkisov, Lev
1 / 9 shared
Snurr, Rq
1 / 4 shared
Keil, Frerich J.
1 / 2 shared
Chart of publication period
2019
2018
2015
2014
2013
2006
2005
2004
2001

Co-Authors (by relevance)

  • Madrid, Elena
  • Marken, Frank
  • Attard, Gary A.
  • Mckeown, Neil B.
  • Song, Qilei
  • Msayib, Kadhum J.
  • Lowe, John P.
  • Daisenberger, Dominik
  • Dissegna, Stefano
  • Fischer, Roland A.
  • Hobday, Claire
  • Vervoorts, Pia
  • Smith, Andrew
  • Kieslich, Gregor
  • Llewellyn, Philip L.
  • Bourelly, Sandrine
  • Amabilino, Silvia
  • Walton, Richard I.
  • Lennox, Matthew J.
  • Stevens, Thomas W.
  • Millange, Franck
  • Munn, Alexis S.
  • Clarkson, Guy J.
  • Daniels, Luke M.
  • Zhu, Nianyong
  • Schmitt, Wolfgang
  • Ward, Kenneth
  • Greenaway, Alex
  • Mckellar, Scott C.
  • Banu, Ana Maria
  • Graham, Alexander J.
  • Moggach, Stephen A.
  • Mowat, John P. S.
  • Wright, Paul A.
  • Fairen-Jimenez, David
  • Thompson, Stephen P.
  • Chen, Linjiang
  • Morrison, Carole A.
  • Bourrelly, Sandrine
  • Serre, Christian
  • Férey, Gérard
  • Latroche, Michel
  • Surblé, Suzy
  • Snurr, Randall Q.
  • Frost, Houston
  • Sarkisov, Lev
  • Snurr, Rq
  • Keil, Frerich J.
OrganizationsLocationPeople

article

Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray Powder Diffraction Experiments

  • Fairen-Jimenez, David
  • Thompson, Stephen P.
  • Chen, Linjiang
  • Mowat, John P. S.
  • Morrison, Carole A.
  • Duren, Tina
  • Wright, Paul A.
Abstract

<p>Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO<sub>2</sub> at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2<sub>1</sub>/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO<sub>2</sub> adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO<sub>2</sub> loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO<sub>2</sub>-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO<sub>2</sub> pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO<sub>2</sub> adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.</p>

Topics
  • density
  • pore
  • dispersion
  • phase
  • x-ray diffraction
  • theory
  • experiment
  • simulation
  • molecular dynamics
  • anisotropic
  • density functional theory