People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duren, Tina
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfacescitations
- 2018Tuning the Mechanical Response of Metal−Organic Frameworks by Defect Engineeringcitations
- 2015Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligandscitations
- 2014Polymorphism of metal-organic frameworkscitations
- 2014Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressurecitations
- 2013Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray Powder Diffraction Experimentscitations
- 2006Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysiscitations
- 2005Adsorption fundamentals in metal-organic frameworks from molecular modeling
- 2004Molecular modelling of adsorption in novel nanoporous metal-organic materialscitations
- 2004Assessment of isoreticular metal-organic frameworks for adsorption separationscitations
- 2001Molecular modeling of adsorption in carbon nanotubes
Places of action
Organizations | Location | People |
---|
article
Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray Powder Diffraction Experiments
Abstract
<p>Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO<sub>2</sub> at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2<sub>1</sub>/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO<sub>2</sub> adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO<sub>2</sub> loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO<sub>2</sub>-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO<sub>2</sub> pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO<sub>2</sub> adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.</p>