Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shekibi, Bijan S.

  • Google
  • 1
  • 9
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Tailoring the Chain Packing in Ultrathin Polyelectrolyte Films Formed by Sequential Adsorption23citations

Places of action

Chart of shared publication
Yap, Heng Pho
1 / 1 shared
Quinn, John F.
1 / 3 shared
Pas, Steven J.
1 / 2 shared
Caruso, Frank
1 / 16 shared
Quinn, Anthony
1 / 2 shared
Hill, Anita J.
1 / 11 shared
Mardel, James I.
1 / 1 shared
Tuomisto, Filip
1 / 44 shared
Suzuki, Ryoichi
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Yap, Heng Pho
  • Quinn, John F.
  • Pas, Steven J.
  • Caruso, Frank
  • Quinn, Anthony
  • Hill, Anita J.
  • Mardel, James I.
  • Tuomisto, Filip
  • Suzuki, Ryoichi
OrganizationsLocationPeople

article

Tailoring the Chain Packing in Ultrathin Polyelectrolyte Films Formed by Sequential Adsorption

  • Yap, Heng Pho
  • Quinn, John F.
  • Pas, Steven J.
  • Caruso, Frank
  • Quinn, Anthony
  • Hill, Anita J.
  • Shekibi, Bijan S.
  • Mardel, James I.
  • Tuomisto, Filip
  • Suzuki, Ryoichi
Abstract

<p>Depth profiling experiments by positron annihilation spectroscopy have been used to investigate the free volume element size and concentration in films assembled using the layer-by-layer (LbL) adsorption method. Films prepared from strong polyelectrolytes, weak polyelectrolytes, hydrogen-bonding polymers, and blended polyelectrolyte multilayers have different chain packing that is reflected in the free volume characteristics. The influence of various parameters on free volume, such as number of bilayers, salt concentration, solution pH, and molecular weight, has been systematically studied. The free volume cavity diameters vary from 4 to 6 A, and the free volume concentrations vary from (1.1-4.3) x 10(20) cm(-3), depending on the choice of assembly polymers and conditions. Films assembled from strong polyelectrolytes have fewer free volume cavities with a larger average size than films prepared from weak polyelectrolytes. Blending the weak polyanion poly(acrylic acid), PAA, with the strong polyanion poly(styrene sulfonate), PSS, to layer alternately with the polycation poly(allyamine hydrochloride), PAR, is shown to be a viable method to achieve intermediate free volume characteristics in these LbL films. An increase in salt concentration of the adsorption solutions for films prepared from strong polyelectrolytes makes these films tend toward weaker polyelectrolyte free volume characteristics. Hydrogen-bonded layered films show larger free volume element size and concentration than do their electrostatically bonded counterparts, while reducing the molecular weight of these hydrogen-bonded polymers results in slightly reduced free volume size and concentration. A study of the effect of solution pH on films prepared from weak polyelectrolytes shows that when both polyelectrolytes are substantially charged in solution (assembly pH = 7.5), the chains pack similarly to strong polyelectrolytes (i.e., lower free volume concentration), but with smaller average cavity sizes. These results give, for the first time, a clear indication of how the free volume profile develops in LbL thin films, offering numerous methods to tailor the Angstrom-scale free volume properties by judicious selection of the assembly polymers and conditions. These findings can be potentially exploited to tailor the properties of thin polymer films for applications spanning membranes, sensing, and drug delivery.</p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • thin film
  • layered
  • Hydrogen
  • positron annihilation lifetime spectroscopy
  • molecular weight