People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bao, Zhenan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-polymer hybrids for different monomer concentrations.citations
- 2021Conducting Polymer‐Based Granular Hydrogels for Injectable 3D Cell Scaffolds
- 2020Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni, N-doped Carbon Catalysts.citations
- 2020Air-Stability and Carrier Type in Conductive M3(Hexaaminobenzene)2, (M = Co, Ni, Cu).citations
- 2019Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells.citations
- 2018Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistorscitations
- 2016Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing.citations
- 2015Structural and Electrical Investigation of C 60 –Graphene Vertical Heterostructurescitations
- 2015Ultrahigh electrical conductivity in solution-sheared polymeric transparent films.citations
- 2015Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECTcitations
- 2015Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymerscitations
- 2014One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin filmscitations
- 2014Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymercitations
- 2012Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivativescitations
- 2012Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applicationscitations
- 2011Tuning charge transport in solution-sheared organic semiconductors using lattice straincitations
- 2010Highly sensitive flexible pressure sensors with microstructured rubber dielectric layerscitations
- 2009Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistorscitations
- 2009High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductorscitations
- 2009Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistorscitations
Places of action
Organizations | Location | People |
---|
article
Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives
Abstract
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.