People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bredas, Jean-Luc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiencycitations
- 2022Controlled n‐Doping of Naphthalene‐Diimide‐Based 2D Polymerscitations
- 2018Characterization of the Valence and Conduction Band Levels of n = 1 2D Perovskites: A Combined Experimental and Theoretical Investigationcitations
- 2017Singlet Fission in Rubrene Derivatives: Impact of Molecular Packingcitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors achieved through the use of molecular additivescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.
- 2017Open-Circuit Voltage in Organic Solar Cells: The Impacts of Donor Semicrystallinity and Coexistence of Multiple Interfacial Charge-Transfer Bandscitations
- 2016High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additivescitations
- 2016Improving the Stability of Organic Semiconductors: Distortion Energy versus Aromaticity in Substituted Bistetracenecitations
- 2016Passivation of Molecular n-Doping: Exploring the Limits of Air Stabilitycitations
- 2016Ionization Energies, Electron Affinities, and Polarization Energies of Organic Molecular Crystals: Quantitative Estimations from a Polarizable Continuum Model (PCM)-Tuned Range-Separated Density Functional Approachcitations
- 2016Spectroscopy and control of near-surface defects in conductive thin film ZnOcitations
- 2016Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxidescitations
- 2015Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Propertiescitations
- 2015Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61-Butyl Acid Methyl Ester (PCBM)citations
- 2012Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivativescitations
Places of action
Organizations | Location | People |
---|
article
Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivatives
Abstract
Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.