Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Simorre, Jean-Pierre

  • Google
  • 1
  • 9
  • 97

French National Centre for Scientific Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions.97citations

Places of action

Chart of shared publication
Kern, T.
1 / 1 shared
Hediger, Sabine
1 / 3 shared
Bougault, Catherine
1 / 1 shared
Giustini, C.
1 / 1 shared
Amoroso, A.
1 / 2 shared
Giffard, M.
1 / 1 shared
Vollmer, Waldemar
1 / 2 shared
Joris, B.
1 / 1 shared
Nk, Bui
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Kern, T.
  • Hediger, Sabine
  • Bougault, Catherine
  • Giustini, C.
  • Amoroso, A.
  • Giffard, M.
  • Vollmer, Waldemar
  • Joris, B.
  • Nk, Bui
OrganizationsLocationPeople

article

Dynamics characterization of fully hydrated bacterial cell walls by solid-state NMR: evidence for cooperative binding of metal ions.

  • Simorre, Jean-Pierre
  • Kern, T.
  • Hediger, Sabine
  • Bougault, Catherine
  • Giustini, C.
  • Amoroso, A.
  • Giffard, M.
  • Vollmer, Waldemar
  • Joris, B.
  • Nk, Bui
Abstract

The bacterial cell wall maintains a cell's integrity while allowing growth and division. It is made up of peptidoglycan (PG), a biopolymer forming a multigigadalton bag-like structure, and, additionally in gram-positive bacteria, of covalently linked anionic polymers collectively called teichoic acids. These anionic polymers are thought to play important roles in host-cell adhesion, inflammation, and immune activation. In this Article, we compare the flexibility and the organization of peptidoglycans from gram-negative bacteria (E. coli) with its counterpart from different gram-positive bacteria using solid-state nuclear magnetic resonance spectroscopy (NMR) under magic-angle sample spinning (MAS). The NMR fingerprints suggest an identical local conformation of the PG in all of these bacterial species. Dynamics in the peptidoglycan network decreases from E. coli to B. subtilis and from B. subtilis to S. aureus and correlates mainly with the degree of peptide cross-linkage. For intact bacterial cells and isolated cell walls, we show that (31)P solid-state NMR is particularly well adapted to characterize and differentiate wall teichoic acids of different species. We have further observed complexation with divalent ions, highlighting an important structural aspect of gram-positive cell wall architecture. We propose a new model for the interaction of divalent cations with both wall teichoic acids and carbonyl groups of peptidoglycan.

Topics
  • impedance spectroscopy
  • polymer
  • activation
  • Nuclear Magnetic Resonance spectroscopy
  • spinning