Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parise, Jb

  • Google
  • 2
  • 8
  • 202

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Hydrostatic low-range pressure applications of the Paris-Edinburgh cell utilizing polymer gaskets for diffuse X-ray scattering measurements16citations
  • 2002Pressure-induced volume expansion of zeolites in the Natrolite family186citations

Places of action

Chart of shared publication
Locke, Dr
1 / 1 shared
Chapman, Kw
1 / 3 shared
Kurtz, Ca
1 / 1 shared
Chupas, Pj
1 / 1 shared
Hriljac, Joseph, A.
2 / 17 shared
Vogt, T.
1 / 5 shared
Artioli, G.
1 / 12 shared
Lee, Y.
1 / 9 shared
Chart of publication period
2007
2002

Co-Authors (by relevance)

  • Locke, Dr
  • Chapman, Kw
  • Kurtz, Ca
  • Chupas, Pj
  • Hriljac, Joseph, A.
  • Vogt, T.
  • Artioli, G.
  • Lee, Y.
OrganizationsLocationPeople

article

Pressure-induced volume expansion of zeolites in the Natrolite family

  • Vogt, T.
  • Parise, Jb
  • Artioli, G.
  • Lee, Y.
  • Hriljac, Joseph, A.
Abstract

Powder diffraction patterns of the zeolites natrolite (Na(16)Al(16)Si(24)O(80).16H(2)O), mesolite (Na(5.33)Ca(5.33)Al(16)Si(24)O(80).21.33H(2)O), scolecite (Ca(8)Al(16)Si(24)O(80).24H(2)O), and a gallosilicate analogue of natrolite (K(16)Ga(16)Si(24)O(80).12H(2)O), all crystallizing with a natrolite framework topology, were measured as a function of pressure up to 5.0 GPa with use of a diamond-anvil cell and a 200 microm focused monochromatic synchrotron X-ray beam. Under the hydrostatic conditions mediated by an alcohol and water mixture, all these materials showed an abrupt volume expansion (ca. 2.5% in natrolite) between 0.8 and 1.5 GPa without altering the framework topology. Rietveld refinements using the data collected on natrolite show that the anomalous swelling is due to the selective sorption of water from the pressure-transmission fluid expanding the channels along the a- and b-unit cell axes. This gives rise to a "superhydrated" phase of natrolite with an approximate formula of Na(16)Al(16)Si(24)O(80).32H(2)O, which contains hydrogen-bonded helical water nanotubes along the channels. In mesolite, which at ambient pressure is composed of ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis, this anomalous swelling is accompanied by a loss of the superlattice reflections (b(mesolite) = 3b(natrolite)). This suggests a pressure-induced order-disorder transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels. The powder diffraction data of scolecite, a monoclinic analogue of natrolite where all sodium cations are substituted by calcium and water molecules, reveal a reversible pressure-induced partial amorphization under hydrostatic conditions. Unlike the 2-dimensional swelling observed in natrolite and mesolite, the volume expansion of the potassium gallosilicate natrolite is 3-dimensional and includes the lengthening of the channel axis. In addition, the expanded phase, stable at high pressure, is retained at ambient conditions after pressure is released. The unprecedented and intriguing high-pressure crystal chemistry of zeolites with the natrolite framework topology is discussed here relating the different types of volume expansion to superhydration.

Topics
  • impedance spectroscopy
  • phase
  • nanotube
  • Sodium
  • Hydrogen
  • Potassium
  • Calcium
  • alcohol