Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kepert, C. J.

  • Google
  • 2
  • 6
  • 560

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2002Flexible sorption and transformation behavior in a microporous metal-organic framework265citations
  • 2001Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni-2(4,4 '-bipyridine)(3)(NO3)(4): guest modification of host sorption behavior295citations

Places of action

Chart of shared publication
Rosseinsky, M. J.
2 / 8 shared
Cussen, Edmund
2 / 17 shared
Claridge, J. B.
1 / 1 shared
Thomas, K. M.
1 / 3 shared
Fletcher, Ashleigh
1 / 11 shared
Prior, T. J.
1 / 2 shared
Chart of publication period
2002
2001

Co-Authors (by relevance)

  • Rosseinsky, M. J.
  • Cussen, Edmund
  • Claridge, J. B.
  • Thomas, K. M.
  • Fletcher, Ashleigh
  • Prior, T. J.
OrganizationsLocationPeople

article

Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni-2(4,4 '-bipyridine)(3)(NO3)(4): guest modification of host sorption behavior

  • Rosseinsky, M. J.
  • Cussen, Edmund
  • Kepert, C. J.
  • Thomas, K. M.
  • Fletcher, Ashleigh
  • Prior, T. J.
Abstract

This study combines measurements of the thermodynamics and kinetics of guest sorption with powder X-ray diffraction measurements of the nanoporous metal organic framework adsorbent (host) at different adsorptive (guest) loadings. The adsorption characteristics of nitrogen, argon, carbon dioxide, nitrous oxide and ethanol and methanol vapors on Ni2(4,4'-bipyridine)3(NO3)4 were studied over a range of temperatures as a function of pressure. Isotherm steps were observed for both carbon dioxide and nitrous oxide adsorption at approximately 10-20% of the total pore volume and at approximately 70% of total pore volume for methanol adsorption. The adsorption kinetics obey a linear driving force (LDF) mass transfer model for adsorption at low surface coverage. At high surface coverage, both methanol and ethanol adsorption follow a combined barrier resistance/diffusion model. The rates of adsorption in the region of both the carbon dioxide and methanol isotherm steps were significantly slower than those observed either before or after the step. X-ray diffraction studies at various methanol loadings showed that the host structure disordered initially but underwent a structural change in the region of the isotherm step. These isotherm steps are ascribed to discrete structural changes in the host adsorbent that are induced by adsorption on different sites. Isotherm steps were not observed for ethanol adsorption, which followed a Langmuir isotherm. Previous X-ray crystallography studies have shown that all the sites are equivalent for ethanol adsorption on Ni2(4,4'-bipyridine)3(NO3)4, with the host structure undergoing a scissoring motion and the space group remaining unchanged during adsorption. The activation energies and preexponential factors for methanol and ethanol adsorption were calculated for each pressure increment at which the linear driving force model was obeyed. There was a good correlation between activation energy and ln(preexponential factor), indicating a compensation effect. The results are discussed in terms of reversible adsorbate/adsorbent (guest/host) structural changes and interactions and the adsorption mechanism. The paper contains the first evidence of specific interactions between guests and functional groups leading to structural change in flexible porous coordination polymer frameworks.

Topics
  • porous
  • pore
  • surface
  • polymer
  • Carbon
  • Nitrogen
  • powder X-ray diffraction
  • activation
  • space group