People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Anker Degn
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2021Characterization of oxide-supported Cu by infrared measurements on adsorbed COcitations
- 2021Promoting effect of copper loading and mesoporosity on Cu-MOR in the carbonylation of dimethyl ether to methyl acetatecitations
- 2020Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRDcitations
- 2019Modeling of the molybdenum loss in iron molybdate catalyst pellets for selective oxidation of methanol to formaldehydecitations
- 2019Catalytic Hydropyrolysis of Biomass using Molybdenum Sulfide Based Catalyst. Effect of Promoterscitations
- 2018Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2018Hydrogen assisted catalytic biomass pyrolysis for green fuels. Effect of cata-lyst in the fluid bed
- 2016Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures
- 2016Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2016Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperaturescitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
- 2012Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gascitations
- 2012Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalystscitations
- 2012CO hydrogenation to methanol on Cu–Ni catalysts:Theory and experimentcitations
- 2011Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gasescitations
- 2011Flame spray synthesis of CoMo/Al2O3 hydrotreating catalystscitations
- 2010Oxy-fuel combustion of solid fuelscitations
- 2009Fluidized-Bed Coating with Sodium Sulfate and PVA-TiO2, 1. Review and Agglomeration Regime Mapscitations
- 2008A review of the interference of carbon containing fly ash with air entrainment in concretecitations
- 2008Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying forcecitations
Places of action
Organizations | Location | People |
---|
article
Catalytic Conversion of Syngas into Higher Alcohols over Carbide Catalysts
Abstract
This work investigates the use of the bulk carbides Mo2C, WC, and NbC as catalysts for the conversion of syngas into higher alcohols. K2CO3/WC produces mainly CH3OH and CH4 with a low activity. NbC has a very low activity in CO hydrogenation. K2CO3/Mo2C produces mixed alcohols with a reasonable activity and selectivity. In a 94 h test the activity and the specific surface area of the K2CO3/Mo2C catalyst decreased significantly, but X-ray diffraction and transmission electron microscopy did not indicate a strong sintering of the carbide. A likely cause for the deactivation is the formation of carbonaceous deposits on the catalyst. At the same general activity level Li, K, and Cs provide similar promotional effects for Mo2C, although K at a loading level of alkali metal/Mo = 0.164 mol/mol provides the better behavior at equal conditions. The effect of further additives on the K2CO3/Mo2C system was evaluated, but only Cu yielded an improvement.