Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Renz, Franz

  • Google
  • 13
  • 49
  • 188

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2024Monitoring of multiple fabrication parameters of electrospun polymer fibers using mueller matrix analysiscitations
  • 2024Facile Approach for the Fabrication of Vapor Sensitive Spin Transition Composite Nanofiberscitations
  • 2022Preliminary Investigation of Possible Biochar Use as Carbon Source in Polyacrylonitrile Electrospun Fiber Productioncitations
  • 2021Accelerated ageing of surface modified flax fiber reinforced composites6citations
  • 2021Polymer Optical Waveguide Sensor Based on Fe-Amino-Triazole Complex Molecular Switchescitations
  • 2020Graphene Nanoplatelet (GNPs) Doped Carbon Nanofiber (CNF) System: Effect of GNPs on the Graphitic Structure of Creep Stress and Non-Creep Stress Stabilized Polyacrylonitrile (PAN)14citations
  • 2020Graphene Nanoplatelet (GNPs) Doped Carbon Nanofiber (CNF) System: Effect of GNPs on the Graphitic Structure of Creep Stress and Non-Creep Stress Stabilized Polyacrylonitrile (PAN)citations
  • 2019Electrical conductivity in biocomposites via polypyrrole coating3citations
  • 2019Thermal stability of natural fibers via thermoset coating for application in engineering thermoplastics5citations
  • 2018Effect of the degree of inversion on optical properties of spinel ZnFe2O4citations
  • 2018Electrospun Polyacrylonitrile Based Carbon Nanofibers: The Role of Creep Stress towards Cyclization and Graphitizationcitations
  • 2014Mössbauer Spectroscopic Study and Magnetic Investigation of Iron(III) Complexes on a Dendrimeric Basiscitations
  • 2000Synthesis, crystal structure, EXAFS, and magnetic properties of catena [μ-tris(1,2-bis(tetrazol-1-yl)propane-N1,N1')iron(II)] bis(perchlorate).160citations

Places of action

Chart of shared publication
Roth, Bernhard
2 / 19 shared
Jütte, Lennart
1 / 1 shared
Sindelar, Ralf
5 / 5 shared
Gopani, Jigar
1 / 1 shared
Günther, Axel
1 / 4 shared
Brehme, Jules
2 / 2 shared
Sharma, Gaurav
1 / 9 shared
Seydi Kilic, Maximilian
1 / 1 shared
Sander, Patrick
1 / 1 shared
Tran, Kevin
1 / 1 shared
Allesina, Giulio
1 / 2 shared
Schirra, Aaron
1 / 1 shared
Ali, Annas Bin
3 / 3 shared
Pedrazzi, Simone
1 / 2 shared
Vellguth, Natalie
3 / 3 shared
Shamsuyeva, Madina
3 / 10 shared
Endres, Hans-Josef
3 / 15 shared
Klimke, Stephen
2 / 2 shared
Lachmayer, Roland
1 / 11 shared
Khan, Muhammad Shaukat
1 / 2 shared
Farooq, Hunain
1 / 1 shared
Wittmund, Christopher
1 / 1 shared
Tegenkamp, Christoph
2 / 25 shared
Koch, Julian
1 / 4 shared
Kroll, Stephen
1 / 2 shared
Rudeck, Tanja
1 / 1 shared
Bredow, Thomas
1 / 13 shared
Jahns, Moritz
1 / 2 shared
Robben, Lars
1 / 2 shared
Gesing, Thorsten M.
1 / 12 shared
Dillert, Ralf
1 / 3 shared
Ulpe, Anna C.
1 / 2 shared
Bahnemann, Detlef W.
1 / 12 shared
Granone, Luis I.
1 / 1 shared
Dreyer, Bastian
1 / 1 shared
Lekovic, Faik
1 / 1 shared
Nariaki, Driss
1 / 1 shared
Homenya, Patrick
1 / 1 shared
Van Koningsbruggen, Petra
1 / 6 shared
Haasnoot, Jaap G.
1 / 3 shared
Moscovici, Jacques
1 / 2 shared
Gütlich, Philipp
1 / 1 shared
Garcia, Yann
1 / 30 shared
Kahn, Olivier
1 / 3 shared
Michalowicz, Alain
1 / 1 shared
Kooijman, Huub
1 / 4 shared
Provost, Karine
1 / 2 shared
Spek, Anghony L.
1 / 1 shared
Fournès, Léopold
1 / 9 shared
Chart of publication period
2024
2022
2021
2020
2019
2018
2014
2000

Co-Authors (by relevance)

  • Roth, Bernhard
  • Jütte, Lennart
  • Sindelar, Ralf
  • Gopani, Jigar
  • Günther, Axel
  • Brehme, Jules
  • Sharma, Gaurav
  • Seydi Kilic, Maximilian
  • Sander, Patrick
  • Tran, Kevin
  • Allesina, Giulio
  • Schirra, Aaron
  • Ali, Annas Bin
  • Pedrazzi, Simone
  • Vellguth, Natalie
  • Shamsuyeva, Madina
  • Endres, Hans-Josef
  • Klimke, Stephen
  • Lachmayer, Roland
  • Khan, Muhammad Shaukat
  • Farooq, Hunain
  • Wittmund, Christopher
  • Tegenkamp, Christoph
  • Koch, Julian
  • Kroll, Stephen
  • Rudeck, Tanja
  • Bredow, Thomas
  • Jahns, Moritz
  • Robben, Lars
  • Gesing, Thorsten M.
  • Dillert, Ralf
  • Ulpe, Anna C.
  • Bahnemann, Detlef W.
  • Granone, Luis I.
  • Dreyer, Bastian
  • Lekovic, Faik
  • Nariaki, Driss
  • Homenya, Patrick
  • Van Koningsbruggen, Petra
  • Haasnoot, Jaap G.
  • Moscovici, Jacques
  • Gütlich, Philipp
  • Garcia, Yann
  • Kahn, Olivier
  • Michalowicz, Alain
  • Kooijman, Huub
  • Provost, Karine
  • Spek, Anghony L.
  • Fournès, Léopold
OrganizationsLocationPeople

article

Synthesis, crystal structure, EXAFS, and magnetic properties of catena [μ-tris(1,2-bis(tetrazol-1-yl)propane-N1,N1')iron(II)] bis(perchlorate).

  • Renz, Franz
  • Van Koningsbruggen, Petra
  • Haasnoot, Jaap G.
  • Moscovici, Jacques
  • Gütlich, Philipp
  • Garcia, Yann
  • Kahn, Olivier
  • Michalowicz, Alain
  • Kooijman, Huub
  • Provost, Karine
  • Spek, Anghony L.
  • Fournès, Léopold
Abstract

<p>[Fe(btzp)<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub> (btzp = 1,2-bis(tetrazol-1-yl)propane) represents the first structurally characterized Fe(II) linear chain compound exhibiting thermal spin crossover. It shows a very gradual spin transition (T<sub>1/2</sub> = 130 K) which has been followed by magnetic susceptibility measurements and <sup>57</sup>Fe Mössbauer spectroscopy. The structure has been solved at 200 and 100 K by single-crystal X-ray analysis. It crystallizes in the trigonal space group P3c1 with Z = 2 Fe(II) units at both temperatures. The molecular structure consists of chains running along the c axis in which the Fe(II) ions are linked by three <em>N</em>4,<em>N</em>4' coordinating bis(tetrazole) ligands. The main difference between the two forms appears to be in the Fe-N bond lengths, which are 2.164(4) A at 200 K and 2.038(4) A at 100 K. The Fe-Fe separations are 7.422(1) Å at 200 K and 7.273(1) A at 100 K. The EXAFS results are consistent with the crystal structure. In both spin states, the FeN6 octahedron is almost regular within the EXAFS resolution. The Fe-N distance is found as 2.16(2)Åat 300 K and 2.00(2) Å at 40 K. The absence of the "7 Å peak" in the EXAFS spectra of [Fe(btzp)<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub>, in contrast with what has been observed for the [Fe(4-R-1,2,4-triazole)<sub>3</sub>]-(anion)<sub>2</sub> chain compounds, confirms that this peak can be used as the signature of a metal alignment only when it involves a strongly enhanced multiple scattering M-M-M path, with M-M spacing less than 4 A. Irradiation with green light at 5 K has led to the population of the metastable high-spin state for the iron(II) ion. The nature of the spin-crossover behavior has been discussed on the basis of the structural features.</p>

Topics
  • impedance spectroscopy
  • compound
  • laser emission spectroscopy
  • iron
  • susceptibility
  • space group
  • molecular structure
  • Mössbauer spectroscopy
  • extended X-ray absorption fine structure spectroscopy