Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Martínez, Ma Angeles

  • Google
  • 1
  • 7
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009DNA-cleavage induced by new macrocyclic schiff base dinuclear Cu(I) complexes containing pyridyl pendant arms40citations

Places of action

Chart of shared publication
Moreno, Virtudes
1 / 1 shared
Prieto, Ma José
1 / 1 shared
Llobet, Antoni
1 / 9 shared
Fontrodona, Xavier
1 / 1 shared
Sala, Xavier
1 / 9 shared
Font, Marc
1 / 1 shared
Arbuse, Arnau
1 / 1 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Moreno, Virtudes
  • Prieto, Ma José
  • Llobet, Antoni
  • Fontrodona, Xavier
  • Sala, Xavier
  • Font, Marc
  • Arbuse, Arnau
OrganizationsLocationPeople

article

DNA-cleavage induced by new macrocyclic schiff base dinuclear Cu(I) complexes containing pyridyl pendant arms

  • Moreno, Virtudes
  • Prieto, Ma José
  • Llobet, Antoni
  • Fontrodona, Xavier
  • Sala, Xavier
  • Martínez, Ma Angeles
  • Font, Marc
  • Arbuse, Arnau
Abstract

A new series of dinuclear Cu(I) complexes with hexaazamacrocyclic Schiff base ligand containing pyridyl pendant arms has been synthesized and characterized. The solid-state structures of [Cu2I(bsp3py) ](CF3SO3)2 (1(CF3SO 3)2), [Cu2I(bsm3py)](SbF 6)2 (2(SbF6)2), and [Cu 2I(bsp2py)](CF3SO3)2 (3(CF3SO3)2) have been established by single-crystal X-ray diffraction analysis. The geometries of the copper centers in all three cases are almost identical showing a distorted tetrahedral coordination, very close to a trigonal pyramidal arrangement. Interactions of complexes with calf thymus DNA have been investigated by circular dichroism spectroscopy (CD) which suggests that the interaction for each complex is a nonintercalative mode with regard to DNA. The electrophoretic mobility study and the atomic force microscopy (AFM) in the presence of H2O2 reveal a cleavage of pBR322 supercoiled DNA that depends on the nature of the Cu(I) complex used. The most efficient reactivity is observed for complexes 1(CF3SO3)2 and 2(CF3SO 3)2 whereas complex 3(CF3SO3) 2 displays a lesser reactivity. The different DNA-cleavage activity of complexes 1-3 is due the different electronic factors and complex topology induced by the natures of the different ligands. This work constitutes an example of how small modifications introduced in the macrocyclic backbone of the metal complexes lead to dramatic changes in the nuclease activity. © 2009 American Chemical Society.

Topics
  • impedance spectroscopy
  • mobility
  • x-ray diffraction
  • atomic force microscopy
  • copper
  • circular dichroism spectroscopy