Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schwarz, Ulrich S.

  • Google
  • 1
  • 6
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Cationic Clathrate I Si46-xPxTey (6.6(1) < y < 7.5(1), x < 2y) : Crystal Structure, Homogeneity Range, and Physical Properties42citations

Places of action

Chart of shared publication
Shevelkov, Andrei V.
1 / 9 shared
Kovnir, Kirill
1 / 13 shared
Haarmann, F.
1 / 1 shared
Schnelle, Walter
1 / 20 shared
Grin, Yu.
1 / 4 shared
Burkhardt, U.
1 / 4 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Shevelkov, Andrei V.
  • Kovnir, Kirill
  • Haarmann, F.
  • Schnelle, Walter
  • Grin, Yu.
  • Burkhardt, U.
OrganizationsLocationPeople

article

Cationic Clathrate I Si46-xPxTey (6.6(1) < y < 7.5(1), x < 2y) : Crystal Structure, Homogeneity Range, and Physical Properties

  • Shevelkov, Andrei V.
  • Kovnir, Kirill
  • Haarmann, F.
  • Schwarz, Ulrich S.
  • Schnelle, Walter
  • Grin, Yu.
  • Burkhardt, U.
Abstract

A new cationic clathrate I Si(46-x)P(x)Te(y) (6.6(1) < or = y < or = 7.5(1), x < or = 2y at 1375 K) was synthesized from the elements and characterized by X-ray powder diffraction, thermal analysis, scanning electron microscopy, wavelength dispersive X-ray spectroscopy (WDXS), neutron powder diffraction, and (31)P NMR spectroscopy. The thermal behaviors of the magnetic susceptibility and resistivity were investigated as well. Si(46-x)P(x)Te(y) reveals a wide homogeneity range due to the presence of vacancies in the tellurium guest positions inside the smaller cage of the clathrate I structure. The vacancy ordering in the structure of Si(46-x)P(x)Te(y) causes the change of space group from Pm3n (ideal clathrate I) to Pm3 accompanied by the redistribution of P and Si atoms over different framework positions. Neutron powder diffraction confirmed that P atoms preferably form a cage around the vacancy-containing tellurium guest position. Additionally, (31)P NMR spin-spin relaxation experiments revealed the presence of sites with different coordination of phosphorus atoms. Precise determination of the composition of Si(46-x)P(x)Te(y) by WDXS showed slight but noticeable deviation (x < or = 2y) of phosphorus content from the Zintl counting scheme (x = 2y). The compound is diamagnetic while resistivity measurements show activated behavior or that of heavily doped semiconductors. Thermal analysis revealed high stability of the investigated clathrate: Si(46-x)P(x)Te(y) melts incongruently at approximately 1460 K in vacuum and is stable in air against oxidation up to 1295 K.

Topics
  • impedance spectroscopy
  • compound
  • resistivity
  • scanning electron microscopy
  • experiment
  • melt
  • semiconductor
  • thermal analysis
  • susceptibility
  • Nuclear Magnetic Resonance spectroscopy
  • wavelength dispersive X-ray spectroscopy
  • space group
  • Phosphorus
  • vacancy
  • Tellurium