People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kruk, Robert
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Strained single crystal high entropy oxide manganite thin films
- 2024Strained single crystal high entropy oxide manganite thin filmscitations
- 2023High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganitescitations
- 2023A New Class of Cluster–Matrix Nanocomposite Made of Fully Miscible Components
- 2022Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of $(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})_3O_4$ : Unraveling the suppression of configuration entropy in high entropy oxidescitations
- 2022A Unique Mechanochemical Redox Reaction Yielding Nanostructured Double Perovskite Sr2FeMoO6 With an Extraordinarily High Degree of Anti-Site Disordercitations
- 2022Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: Unraveling the suppression of configuration entropy in high entropy oxides
- 2019Controlling the structure and magnetic properties of cluster-assembled metallic glasses
- 2019Robust Macroscopic Polarization of Block Copolymer-Templated Mesoporous Perovskite-Type Thin-Film Ferroelectricscitations
- 2018Electrochemical Tuning of Magnetism in Ordered Mesoporous Transition-Metal Ferrite Films for Micromagnetic Actuationcitations
- 2016Temperature-Dependent Performance of Printed Field-Effect Transistors with Solid Polymer Electrolyte Gatingcitations
- 2014Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5 : unrivaled complexity in oxygen vacancy orderingcitations
Places of action
Organizations | Location | People |
---|
article
Crystallographic and magnetic structure of the perovskite-type compound BaFeO2.5 : unrivaled complexity in oxygen vacancy ordering
Abstract
We report here on the characterization of the vacancy-ordered perovskite-type structure of BaFeO2.5 by means of combined Rietveld analysis of powder X-ray and neutron diffraction data. The compound crystallizes in the monoclinic space group P21/c [a = 6.9753(1) Å, b = 11.7281(2) Å, c = 23.4507(4) Å, β = 98.813(1)°, and Z = 28] containing seven crystallographically different iron atoms. The coordination scheme is determined to be Ba7(FeO4/2)1(FeO3/2O1/1)3(FeO5/2)2(FeO6/2)1 = Ba7Fe[6]1Fe[5]2Fe[4]4O17.5 and is in agreement with the 57Fe Mössbauer spectra and density functional theory based calculations. To our knowledge, the structure of BaFeO2.5 is the most complicated perovskite-type superstructure reported so far (largest primitive cell, number of ABX2.5 units per unit cell, and number of different crystallographic sites). The magnetic structure was determined from the powder neutron diffraction data and can be understood in terms of “G-type” antiferromagnetic ordering between connected iron-containing polyhedra, in agreement with field-sweep and zero-field-cooled/field-cooled measurements.