People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Greguric, I. D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Triamidetriamine bearing macrobicyclic and macrotricyclic ligands: Potential applications in the development of copper-64 radiopharmaceuticals
Abstract
A versatile and straightforward synthetic approach is described for the preparation of triamide bearing analogues of sarcophagine hexaazamacrobicyclic cage ligands without the need for a templating metal ion. Reaction of 1,1,1-tris(aminoethyl)ethane (tame) with 3 equiv of 2-chloroacetyl chloride, yields the tris(α-chloroamide) synthetic intermediate 6, which when treated with either 1,1,1-tris(aminoethyl)ethane or 1,4,7-triazacyclononane furnished two novel triamidetriamine cryptand ligands (7 and 8 respectively). The Co(III) and Cu(II) complexes of cryptand 7 were prepared; however, cryptand 8 could not be metalated. The cryptands and the Co(III) complex 9 have been characterized by elemental analysis, 1H and 13C NMR spectroscopy, and X-ray crystallography. These studies confirm that the Co(III) complex 9 adopts an octahedral geometry with three facial deprotonated amido-donors and three facial amine donor groups. The Cu(II) complex 10 was characterized by elemental analysis, single crystal X-ray crystallography, cyclic voltammetry, and UV-visible absorption spectroscopy. In contrast to the Co(III) complex (9), the Cu(II) center adopts a square planar coordination geometry, with two amine and two deprotonated amido donor groups. Compound 10 exhibited a quasi-reversible, one-electron oxidation, which is assigned to the Cu2+/3+ redox couple. These cryptands represent interesting ligands for radiopharmaceutical applications, and 7 has been labeled with 64Cu to give 64Cu-10. This complex showed good stability when subjected to L-cysteine challenge whereas low levels of decomplexation were evident in the presence of L-histidine. © 2013 American Chemical Society.