Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gray, Benjamin M.

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Templated non-oxide sol-gel preparation of well-ordered macroporous (inverse opal) Ta3N5 films10citations

Places of action

Chart of shared publication
Mallinson, Christopher F.
1 / 2 shared
Mclachlan, Martyn A.
1 / 10 shared
Owen, John R.
1 / 3 shared
Hector, Andrew Lee
1 / 50 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Mallinson, Christopher F.
  • Mclachlan, Martyn A.
  • Owen, John R.
  • Hector, Andrew Lee
OrganizationsLocationPeople

article

Templated non-oxide sol-gel preparation of well-ordered macroporous (inverse opal) Ta3N5 films

  • Mallinson, Christopher F.
  • Mclachlan, Martyn A.
  • Gray, Benjamin M.
  • Owen, John R.
  • Hector, Andrew Lee
Abstract

Reactions of Ta(NMe2)5 and n-propylamine are shown to be an effective system for sol-gel processing of Ta3N5. Ordered macroporous films of Ta3N5 on silica substrates have been prepared by infiltration of such a sol into close-packed sacrificial templates of cross-linked 500 nm polystyrene spheres followed by pyrolysis under ammonia to remove the template and crystallize the Ta3N5. Templates with long-range order were produced by controlled humidity evaporation. Pyrolysis of a sol-infiltrated template at 600 °C removes the polystyrene but does not crystallize Ta3N5, and X-ray diffraction shows nanocrystalline TaN plus amorphous material. Heating at 700 °C crystallizes Ta3N5 while retaining a high degree of pore ordering, whereas at 800 °C porous films with a complete loss of order are obtained.

Topics
  • porous
  • pyrolysis
  • pore
  • amorphous
  • x-ray diffraction
  • evaporation