People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karttunen, Antti J.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024[Br4F21]− - a unique molecular tetrahedral interhalogen ion containing a μ4-bridging fluorine atom surrounded by BrF5 moleculescitations
- 2024Dedoping of Carbon Nanotube Networks Containing Metallic Clusters and Chloridecitations
- 2024Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Filmscitations
- 2024Enhancing electrocatalytic activity in metallic thin films through surface segregation of carboncitations
- 2024Ba12[BN2]6.67H4: A Disordered Anti‐Skutterudite filled with Nitridoborate Anionscitations
- 2024Massive reduction in lattice thermal conductivity and strongly enhanced thermoelectric properties in Ge- and Se-doped CoSbScitations
- 2023Elastic Properties of Binary d-Metal Oxides Studied by Hybrid Density Functional Methodscitations
- 2023Enhancing electrocatalytic activity in metallic thin films through surface segregation of carboncitations
- 2023Overcoming the Sticking Point: Electrical Conductivity of Carbon Nanotube Networks Containing 3d Metalscitations
- 2022Photochemistry with ClF3 – An Access to [ClOF2]+ Saltscitations
- 2022Thermal and mechanical properties of the clathrate-II Na24Si136citations
- 2022Expanding the hydride chemistry: antiperovskites A3MO4H (A = Rb, Cs; M = Mo, W) introducing the transition oxometalate hydridescitations
- 2022Bromine Pentafluoride BrF5, the Formation of [BrF6]− Salts, and the Stereochemical (In)activity of the Bromine Lone Pairscitations
- 2022p-type to n-type conductivity transition in thermoelectric CoSbScitations
- 2022Bridging the Junction: Electrical Conductivity of Carbon Nanotube Networkscitations
- 2021DFT-Guided Crystal Structure Redetermination and Lattice Dynamics of the Intermetallic Actinoid Compound UIrcitations
- 2021Emergence of Metallic Conductivity in Ordered One-Dimensional Coordination Polymer Thin Films upon Reductive Dopingcitations
- 2021Photochemistry with Chlorine Trifluoride : Syntheses and Characterization of Difluorooxychloronium(V) Hexafluorido(non)metallates(V), [ClOF2][MF6] (M=V, Nb, Ta, Ru, Os, Ir, P, Sb)citations
- 2020Key Role of Defects in Thermoelectric Performance of TiMSn (M = Ni, Pd, and Pt) Half-Heusler Alloyscitations
- 2020Reactions in Anhydrous Liquid Ammonia : Syntheses and Crystal Structures of [M(NH3)8]I2 (M = Eu, Yb) with Bicapped Trigonal-Prismatic Octaammine Lanthanoid(II) Cations
- 2019Silicon clusters with six and seven unsubstituted verticescitations
- 2019Evolutionary Algorithm-Based Crystal Structure Prediction for Copper (I) Fluoridecitations
- 2019Crystal Structures of α- And β-Nitrogen Trifluoridecitations
- 2019Silicon clusters with six and seven unsubstituted vertices: Via a two-step reaction from elemental siliconcitations
- 2019An Unprecedented Fully H–-Substituted Phosphate Hydride Sr5(PO4)3H Expanding the Apatite Familycitations
- 2019Half-metallicity in uranium intermetallicscitations
- 2019Synthesis and Characterization of [Br 3 ][MF 6 ] (M=Sb, Ir), as well as Quantum Chemical Study of [Br 3 ] + citations
- 2019Reactions of KBrF4 with platinum metalscitations
- 2018Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2citations
- 2018Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2: Periodic Trends Studied by Dispersion-Corrected Hybrid Density Functional Methodscitations
- 2018Thermoelectric Properties of p-Type Cu2O, CuO, and NiO from Hybrid Density Functional Theorycitations
- 2016Substantially enhanced Raman signal for inorganic-organic nanocomposites by ALD-TiO2 cappingcitations
- 2012Modulation of Metallophilic Bondscitations
- 2012Soluble Zintl Phases A(14)ZnGe(16) (A=K, Rb) Featuring [(eta(3)-Ge-4) Zn(eta(2)-Ge-4)](6-) and [Ge-4](4-) Clusters and the Isolation of [(MesCu)(2)(eta(3),eta(3)-Ge-4)](4-)citations
- 2012Intensely Luminescent Homoleptic Alkynyl Decanuclear Gold(I) Clusters and Their Cationic Octanuclear Phosphine Derivativescitations
- 2012Uranyl Halides from Liquid Ammoniacitations
- 2011The Complex Amide K-2[Zr(NH2)(6)]citations
- 2011Bulk Synthesis and Structure of a Microcrystalline Allotrope of Germanium (m-allo-Ge)citations
- 2011Preparation of copper-silicon dioxide nanoparticles with chemical vapor synthesiscitations
- 2010Synthesis, structure, and electronic properties of 4H-germaniumcitations
Places of action
Organizations | Location | People |
---|
article
Intensely Luminescent Homoleptic Alkynyl Decanuclear Gold(I) Clusters and Their Cationic Octanuclear Phosphine Derivatives
Abstract
<p>Treatment of Au(SC4H8)Cl with a stoichiometric amount of hydroxyaliphatic alkyne in the presence of NEt3 results in high-yield self-assembly of homoleptic clusters (AuC2R)(10) (R = 9-fluorenol (1), diphenylmethanol (2), 2,6-dimethyl-4-heptanol (3), 3-methyl-2-butanol (4), 4-methyl-2-pentanol (4), 1-cyclohexanol (6), 2-borneol (7)). The molecular compounds contain an unprecedented catenane metal core with two interlocked 5-membered rings. Reactions of the decanuclear clusters 1-7 with gold-diphosphine complex [Au-2(1,4-PPh2-C6H4-PPh2)(2)](2+) lead to octanuclear cationic derivatives [Au-8(C2R)(6)(PPh2-C6H4-PPh2)(2)](2+) (8-14), which consist of planar tetranuclear units {Au-4(C2R)(4)} coupled with two fragments [AuPPh2-C6H4-PPh2(AuC2R)](+). The titled complexes were characterized by NMR and ESI-MS spectroscopy, and the structures of I, 13, and 14 were determined by single-crystal X-ray diffraction analysis. The luminescence behavior of both Au-10(I) and Au-8(I) families has been studied, revealing efficient room-temperature phosphorescence in solution and in the solid state, with the maximum quantum yield approaching 100% (2 in solution). DFT computational studies showed that in both Au-10(I) and Au-8(I) clusters metal-centered Au --> Au charge transfer transitions mixed with some pi-alkynyl MLCT character play a dominant role in the observed phosphorescence.</p>