People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Williams, Charlotte K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2014Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Compositescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2012Phosphasalen yttrium complexes: Highly active and stereoselective initiators for lactide polymerizationcitations
- 2012Experimental and computational investigation of the mechanism of carbon dioxide/cyclohexene oxide copolymerization using a dizinc catalystcitations
- 2010Iminophosphorane neodymium(III) complexes as efficient initiators for lactide polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
Phosphasalen yttrium complexes: Highly active and stereoselective initiators for lactide polymerization
Abstract
Preparation and characterization of three yttrium alkoxide complexes with new phosphasalen ligands are reported. The phosphasalens are analogues of the well-known salen ligands but with iminophosphorane donors replacing the imine functionality. The three yttrium alkoxide complexes show mono- and dinuclear structures in the solid state, depending on the substituents on the ligand. The new ligands and complexes are characterized using multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction experiments. The complexes are all rapid initiators for lactide polymerization; they show excellent polymerization control on addition of exogeneous alcohol. The mononuclear complex shows extremely rapid rates and a high degree of stereocontrol in rac-lactide polymerization, yielding heterotactic PLA (Ps of 0.9). The phosphasalens are, therefore, excellent ligands for lactide ring-opening polymerization catalysis showing superior rates and stereocontrol versus salen ligands, which may be related to their excellent donating ability and the high degrees of steric protection they can confer.