Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murugesu, M.

  • Google
  • 2
  • 10
  • 256

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet147citations
  • 2004New routes to polymetallic clusters109citations

Places of action

Chart of shared publication
Wernsdorfer, W.
2 / 6 shared
Christou, G.
2 / 5 shared
Brechin, Euan K.
2 / 21 shared
Raftery, J.
2 / 5 shared
Brockman, J.
1 / 1 shared
Sanudo, E. C.
1 / 2 shared
Collison, D.
1 / 3 shared
Teat, S. J.
1 / 5 shared
Jones, L. F.
1 / 2 shared
Rajaraman, G.
1 / 3 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Wernsdorfer, W.
  • Christou, G.
  • Brechin, Euan K.
  • Raftery, J.
  • Brockman, J.
  • Sanudo, E. C.
  • Collison, D.
  • Teat, S. J.
  • Jones, L. F.
  • Rajaraman, G.
OrganizationsLocationPeople

article

Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet

  • Wernsdorfer, W.
  • Murugesu, M.
  • Christou, G.
  • Brechin, Euan K.
  • Raftery, J.
Abstract

<p>The synthesis and magnetic properties of the compound [Mn22O6(OMe)(14)(O2CMe)(16)(tMp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn3O(MeCO2)(6)(HIM)(3)](MeCO2) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn-IV, 18 Mn-III, and 2 Mn-II ions linked by a combination of 6 mu(3)-bridging O-2(-) ions, 14 mu(3)- and mu(2)-bridging MeO- ions, 16 mu-MeCO2_ ligands, and 8 tMp(3-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn3O4] partial cubes and [Mn3O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-1) at 300 K to 48.3 cm(3) K mol(-1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (D (S) over cap (2)(z)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule magnet, with a blocking temperature (T-B) of approximately 1.3 K.</p>

Topics
  • impedance spectroscopy
  • compound
  • Oxygen
  • susceptibility
  • magnetization
  • space group