People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brechin, Euan K.
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Robust Y and Lu TrenSal catalysts for ring-opening polymerisation
- 2021Oxidation state variation in bis-calix[4]arene supported decametallic Mn clusterscitations
- 2020With complements of the ligands: an unusual S-shaped [Mn7]2 assembly from tethered calixarenescitations
- 2020Putting the squeeze on molecule-based magnets: exploiting pressure to develop magneto-structural correlations in paramagnetic coordination compoundscitations
- 2019Effect of pi-aromatic spacers on the magnetic properties and slow relaxation of double stranded metallacyclophanes with a Ln(III)-M-II-M-II-Ln(III) (Ln(III) = Gd-III, Dy-III, Y-III; M-II = Ni-II, Co-II) linear topologycitations
- 2019Molecular multifunctionality preservation upon surface deposition for a chiral single-molecule magnetcitations
- 2018Order in disorder:solution and solid-state studies of [MM] wheels (M = Cr, Al; M = Ni, Zn)citations
- 2018Order in disorder: solution and solid-state studies of [MIII 2 MII 5] wheels (MIII = Cr, Al; MII = Ni, Zn)citations
- 2018Order in disordercitations
- 2010MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnetscitations
- 2010Pressure-Induced Jahn-Teller Switching in a Mn12 nanomagnetcitations
- 2010High pressure studies of hydroxo-bridged Cu(II) dimerscitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO) 3(DMF)]n to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO)(3)(DMF)](n) to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2009High pressure induced spin changes and magneto-structural correlations in hexametallic SMMscitations
- 2008Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surfacecitations
- 2005Magnetic and theoretical characterization of a ferromagnetic Mn(III) dimercitations
- 2005Studies of an enneanuclear manganese single-molecule magnetcitations
- 2004Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnetcitations
- 2004New routes to polymetallic clusters: Fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic propertiescitations
- 2004New routes to polymetallic clusterscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnet
Abstract
<p>The synthesis and magnetic properties of the compound [Mn22O6(OMe)(14)(O2CMe)(16)(tMp)(8)(HIm)(2)] 1 are reported. Complex 1 was prepared by treatment of [Mn3O(MeCO2)(6)(HIM)(3)](MeCO2) (HIm = imidazole) with 1,1,1-tris(hydroxymethyl)propane (H(3)tmp) in MeOH. Complex 1.2MeOH crystallizes in the orthorhombic space group Pbca. The molecule consists of a metallic core of 2 Mn-IV, 18 Mn-III, and 2 Mn-II ions linked by a combination of 6 mu(3)-bridging O-2(-) ions, 14 mu(3)- and mu(2)-bridging MeO- ions, 16 mu-MeCO2_ ligands, and 8 tMp(3-) ligands, which use their alkoxide arms to bridge in a variety of ways. The metal-oxygen core is best described as a wheel made from [Mn3O4] partial cubes and [Mn3O] triangles. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 1.8-300 K temperature range in a 1 T applied field. The chi(M)T value steadily decreases from 56 cm(3) K mol(-1) at 300 K to 48.3 cm(3) K mol(-1) at 30 K and then increases slightly to reach a maximum value of 48.6 cm(3) K mol(-1) at 15 K before dropping rapidly to 40.3 cm(3) K mol(-1) at 5 K. The ground-state spin of complex 1 was established by magnetization measurements in the 0.1-2.0 T and 1.80-4.00 K ranges. Fitting of the data by a matrix-diagonalization method to a model that assumes only the ground state is populated and incorporating only axial zero-field splitting (D (S) over cap (2)(z)), gave a best fit of S = 10, g = 1.96 and D = -0.10 cm(-1). The ac magnetization measurements performed on complex 1 in the 1.8-8 K range in a 3.5 G ac field oscillating at 50-1000 Hz showed frequency-dependent ac susceptibility signals below 3 K. Single-crystal hysteresis loop and relaxation measurements indicate loops whose coercivities are strongly temperature and time dependent, increasing with decreasing temperature and increasing field sweep rate, as expected for the superparamagnetic-like behavior of a single-molecule magnet, with a blocking temperature (T-B) of approximately 1.3 K.</p>