Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Horton, Peter

  • Google
  • 11
  • 47
  • 155

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023β,β-directly linked porphyrin rings17citations
  • 2023N=8 armchair graphene nanoribbons10citations
  • 2020Oxidopolyborate chemistry3citations
  • 2020Oxidopolyborate anions templated by transition-metal complex cations: Self-assembled syntheses and structural studies (XRD) of [Co(NH3)6]2[B4O5(OH)4]3·11H2O, [Ni(phen)3][B7O9(OH)5]·9.5H2O and [Zn(dac)2(H2O)2][B7O9(OH)5]·H2O9citations
  • 2019Syntheses, X-ray structures and characterisation of luminescent chromium(III) complexes incorporating 8-quinolinato ligands4citations
  • 2018Two 1-D coordination polymers containing zinc(II) hexaborates: [Zn(en{B6O7(OH)6}]2H2O (en =1,2-diaminoethane) and [Zn(pn{B6O7(OH)6}]1.5H2O (pn = 1,2-diaminopropane)12citations
  • 2017Synthesis, XRD studies and NLO properties of [p-H2NC6H4CH2NH3][B5O6(OH)4]·1/2H2O and NLO properties of some related pentaborate(1−) salts4citations
  • 2013The competition between halogen bonds (Br???O) and C–H???O hydrogen bonds: the structure of the acetone–bromine complex revisited18citations
  • 2011Synthesis and structures of mono and binuclear nickel(II) thiolate complexes of a dicompartmental pseudo-macrocycle with N(imine)2S2 and N(oxime)2S2 metal-binding sites13citations
  • 2008Synthesis, structure, and supramolecular architecture of benzonitrile and pyridine adducts of bis(pentafluorophenyl)zinc: pentafluorophenyl-aryl interactions versus homoaromatic pairing25citations
  • 2004Mixed valence Mn(II)/Mn(III) [3 x 3] grid complexes: structural, electrochemical, spectroscopic, and magnetic properties40citations

Places of action

Chart of shared publication
Chen, Qiang
1 / 18 shared
Thompson, Amber L.
1 / 5 shared
Coles, Sj
10 / 29 shared
Christensen, Kirsten E.
1 / 1 shared
Anderson, Harry L.
1 / 3 shared
Bogani, Lapo
1 / 2 shared
Pawlak, Rémy
1 / 4 shared
Narita, Akimitsu
1 / 12 shared
Zhang, Heng
1 / 15 shared
Hinaut, Antoine
1 / 3 shared
Okuno, Masanari
1 / 2 shared
Yao, Xuelin
1 / 5 shared
Meyer, Ernst
1 / 8 shared
Graf, Robert
1 / 12 shared
Müllen, Klaus
1 / 32 shared
Kong, Fanmiao
1 / 2 shared
Wang, Hai I.
1 / 4 shared
Bonn, Mischa
1 / 15 shared
Beckett, Michael A.
4 / 6 shared
Altahan, Mohammed A.
3 / 3 shared
Pope, Simon J. A.
1 / 3 shared
Amoroso, Angelo J.
1 / 1 shared
Al-Riyahee, Ali A. A.
1 / 1 shared
Krueger, Kerstin
1 / 1 shared
Jones, Charlotte L.
1 / 1 shared
Marshall, W. G.
1 / 5 shared
Knight, K. S.
1 / 15 shared
Jones, R. H.
1 / 3 shared
Pitak, Mb
1 / 3 shared
Smith, Paul D.
1 / 1 shared
Light, Me
2 / 23 shared
Hursthouse, Michael B.
3 / 11 shared
Fierro, Claudio Mendicute
1 / 1 shared
Spendley, Claire
1 / 1 shared
Hughes, David L.
1 / 4 shared
Mountford, Andrew J.
1 / 2 shared
Lancaster, Simon J.
1 / 2 shared
Martin, Eddy
1 / 1 shared
Kelly, Timothy L.
1 / 2 shared
Grove, Hilde
1 / 1 shared
Dawe, Louise N.
1 / 2 shared
Lemaire, Martin T.
1 / 1 shared
Howard, Judith A. K.
1 / 6 shared
Matthews, Craig J.
1 / 1 shared
Spencer, Elinor C.
1 / 1 shared
Onions, Stuart T.
1 / 1 shared
Thompson, Laurence K.
1 / 2 shared
Chart of publication period
2023
2020
2019
2018
2017
2013
2011
2008
2004

Co-Authors (by relevance)

  • Chen, Qiang
  • Thompson, Amber L.
  • Coles, Sj
  • Christensen, Kirsten E.
  • Anderson, Harry L.
  • Bogani, Lapo
  • Pawlak, Rémy
  • Narita, Akimitsu
  • Zhang, Heng
  • Hinaut, Antoine
  • Okuno, Masanari
  • Yao, Xuelin
  • Meyer, Ernst
  • Graf, Robert
  • Müllen, Klaus
  • Kong, Fanmiao
  • Wang, Hai I.
  • Bonn, Mischa
  • Beckett, Michael A.
  • Altahan, Mohammed A.
  • Pope, Simon J. A.
  • Amoroso, Angelo J.
  • Al-Riyahee, Ali A. A.
  • Krueger, Kerstin
  • Jones, Charlotte L.
  • Marshall, W. G.
  • Knight, K. S.
  • Jones, R. H.
  • Pitak, Mb
  • Smith, Paul D.
  • Light, Me
  • Hursthouse, Michael B.
  • Fierro, Claudio Mendicute
  • Spendley, Claire
  • Hughes, David L.
  • Mountford, Andrew J.
  • Lancaster, Simon J.
  • Martin, Eddy
  • Kelly, Timothy L.
  • Grove, Hilde
  • Dawe, Louise N.
  • Lemaire, Martin T.
  • Howard, Judith A. K.
  • Matthews, Craig J.
  • Spencer, Elinor C.
  • Onions, Stuart T.
  • Thompson, Laurence K.
OrganizationsLocationPeople

article

Mixed valence Mn(II)/Mn(III) [3 x 3] grid complexes: structural, electrochemical, spectroscopic, and magnetic properties

  • Kelly, Timothy L.
  • Grove, Hilde
  • Dawe, Louise N.
  • Lemaire, Martin T.
  • Light, Me
  • Horton, Peter
  • Howard, Judith A. K.
  • Matthews, Craig J.
  • Spencer, Elinor C.
  • Onions, Stuart T.
  • Hursthouse, Michael B.
  • Coles, Sj
  • Thompson, Laurence K.
Abstract

Mn(II)(9) grid complexes with a [Mn-9(?-O)(12)] core, obtained by self-assembly of a series of tritopic picolinic dihydrazone ligands with Mn(II) salts, have been oxidized by both chemical and electrochemical methods to produce mixed oxidation state systems. Examples involving [Mn(III)(3)Mn(II)(6)] and [Mn(III)(4)Mn(II)(5)] combinations have been produced. Structures are reported for [Mn-9(2poap-2H)(6)](NO3)(6).14H(2)O (1), [Mn-9(2poap-2H)(6)](ClO4)(10).14H(2)O (3), and [Mn-9(Cl(2)poap-2H)(6)](ClO4)(9).10H(2)O-3CH(3)CN (10). Structural studies show distinct contraction of the corner grid sites on oxidation, with overall magnetic properties consistent with the resulting changes in electron distribution. Antiferromagnetic exchange in the outer ring of eight metal centers creates a ferrimagnetic subunit, which undergoes antiferromagnetic coupling to the central metal, leading to S = 1/2 (3) and S = 2/2 (10) ground states. Two moderately intense absorptions are observed on oxidation of the Mn(II) grids in the visible and near-infrared (1000 nm, 700 nm), associated with charge transfer transitions (LMCT, IVCT respectively). Compound 1 crystallized in the monoclinic system, space group P2(1)/n, with a = 21.308(2) ?, b = 23.611(2) ?, c = 32.178(3) ?, ? = 93.820(2)°. Compound 3 crystallized in the tetragonal system, space group I-(4), with a = b = 18.44410(10) ?, c = 24.9935(3) ?. Compound 10 crystallized in the triclinic system, space group P-(1) over bar, with a = 19.1150(10) ?, b = 19,7221 (10) ?, c = 26.8334(14) ?, ? = 74.7190(10)°, ? = 77.6970(10)°, ? = 64.7770(10)°. The facile oxidation of the Mn(II)(9) grids is highlighted in terms of their potential use as molecular based platforms for switching and data storage.

Topics
  • impedance spectroscopy
  • compound
  • self-assembly
  • space group