Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bachman, Jonathan E.

  • Google
  • 1
  • 4
  • 69

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite69citations

Places of action

Chart of shared publication
Engelhard, Mark H.
1 / 4 shared
Catalano, Jeffrey G.
1 / 2 shared
Rapponotti, Brett W.
1 / 1 shared
Scherer, Michelle M.
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Engelhard, Mark H.
  • Catalano, Jeffrey G.
  • Rapponotti, Brett W.
  • Scherer, Michelle M.
OrganizationsLocationPeople

article

Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite

  • Engelhard, Mark H.
  • Catalano, Jeffrey G.
  • Rapponotti, Brett W.
  • Bachman, Jonathan E.
  • Scherer, Michelle M.
Abstract

Aqueous Fe(II) reacts with Fe(III) oxides by coupled electron transfer and atom exchange (ETAE) resulting in mineral recrystallization, contaminant reduction, and trace element cycling. Previous studies of Fe(II)-Fe(III) ETAE have explored the reactivity of either pure iron oxide phases or those containing small quantities of soluble trace elements. Naturally occurring iron oxides, however, contain substantial quantities of insoluble impurities (e.g., Al) which are known to affect the chemical properties of such minerals. Here we explore the effect of Al(III), Cr(III), and Sn(IV) substitution (1-8 mol ) on trace element release from Ni(II)-substituted goethite and Zn(II)-substituted hematite during reaction with aqueous Fe(II). Fe(II)-activated trace element release is substantially inhibited from both minerals when an insoluble element is cosubstituted into the structure, and the total amount of release decreases exponentially with increasing cosubstituent. The limited changes in surface composition that occur following reaction with Fe(II) indicate that Al, Cr, and Sn do not exsolve from the structure and that Ni and Zn released to solution originate primarily from the bulk rather than the particle exterior (upper ?3 nm). Incorporation of Al into goethite substantially decreases the amount of iron atom exchange with aqueous Fe(II) and, consequently, the amount of Ni release from the structure. This implies that trace element release inhibition caused by substituting insoluble elements results from a decrease in the amount of mineral recrystallization. These results suggest that naturally occurring iron oxides containing insoluble elements are less susceptible to Fe(II)-activated recrystallization and exhibit a greater retention of trace elements and contaminants than pure mineral phases.

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • phase
  • laser emission spectroscopy
  • iron
  • recrystallization
  • trace element