People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Riisager, Anders
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Polymeric nanoreactors for catalytic applications ; Nanoréacteurs polymériques pour des applications catalytiquescitations
- 2022Monolithic SiC supports with tailored hierarchical porosity for molecularly selective membranes and supported liquid-phase catalysiscitations
- 2022Monolithic SiC supports with tailored hierarchical porosity for molecularly selective membranes and supported liquid-phase catalysiscitations
- 2021Promoting effect of copper loading and mesoporosity on Cu-MOR in the carbonylation of dimethyl ether to methyl acetatecitations
- 2016Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO2/ZrO2/MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activitycitations
- 2016Synergy Effects of the Mixture of Bismuth Molybdate Catalysts with SnO2/ZrO2/MgO in Selective Propene Oxidation and the Connection between Conductivity and Catalytic Activitycitations
- 2012Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalystscitations
- 2011Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gasescitations
Places of action
Organizations | Location | People |
---|
article
Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts
Abstract
Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and nitrogen physisorption and utilized in the oxidation of 2.5–50 wt % aqueous ethanol solutions at elevated temperatures and pressures. The effects of Ru metal loading, pretreatment of catalysts, oxidant pressure, reaction temperature, and substrate concentration were investigated. Quantitative yield of acetic acid was obtained with 1.2 wt % Ru(OH)x/CeO2 under optimized conditions (150 °C, 10 bar O2, 12 h of reaction time, 0.23 mol % Ru to substrate).