People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hämäläinen, Jani Marko Antero
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019How insignificant modifications of photocatalysts can significantly change their photocatalytic activitycitations
- 2018Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Depositioncitations
- 2018Atomic Layer Deposition of Rhenium Disulfidecitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer depositioncitations
- 2014Atomic Layer Deposition of Noble Metals and Their Oxidescitations
- 2013Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactantscitations
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2012Atomic layer deposited iridium oxide thin film as microelectrode coating in stem cell applicationscitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition and Characterization of Aluminum Silicate Thin Films for Optical Applicationscitations
- 2010pH electrode based on ALD deposited iridium oxidecitations
- 2009Metallic Ir, IrO2 and Pt Nanotubes and Fibers by Electrospinning and Atomic Layer Deposition
- 2009Study on atomic layer deposition of amorphous rhodium oxide thin filmscitations
- 2009Atomic layer deposition of iridium thin films by consecutive oxidation and reduction stepscitations
- 2008Atomic layer deposition of iridium oxide thin films from Ir(acac)₃ and ozonecitations
- 2008Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt(acac)₂ and ozonecitations
Places of action
Organizations | Location | People |
---|
article
Atomic layer deposition of iridium thin films by consecutive oxidation and reduction steps
Abstract
"Iridium thin films have been grown by atomic;layer deposition (ALD) using Ir(acaC)(3) (acac = acetylacetonato), ozone, and molecular hydrogeh as precursors at low temperatures between 165 and 200 degrees C. At this temperature range, iridium oxide film results in a process without H-2. Therefore H-2 had a reducing effect on the film after the oxidizing ozone pulse. On the other hand, methanol was not effective in reducing the oxide film. Ir(acaC)(3) was sublimed at 155 degrees C, which sets the lowest deposition temperature limit of 165 degrees C for the process. Iridium films were successfully deposited on Al2O3 nucleation layers but also directly on bare soda lime glasses and native oxide covered silicon substrates. About 60 nm thick films had resistivities and roughnesses less than 12 mu Omega cm and 1.4 nm, respectively. The films contained <= 2 atom % hydrogen, <= 1 atom % carbon, and 4-7 atom % oxygen as impurities. The Ir films passed the common tape test indicating good adhesion to all tested surfaces. A full Ir coverage over the substrate was obtained with 7 nm thick film."