People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Doublet, Marie-Liesse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2021Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitutioncitations
- 2020New p-type Al-substituted SrSnO 3 perovskites for TCO applications?citations
- 2020Thermodynamic origin of dendrite growth in metal anode batteriescitations
- 2019Unified picture of anionic redox in Li/Na-ion batteriescitations
- 2019Unified picture of anionic redox in Li/Na-ion batteriescitations
- 2018Electrochemical Mg alloying properties along the Sb1-xBix solid solutioncitations
- 2018Competition between Metal Dissolution and Gas Release in Li-Rich Li 3 Ru y Ir 1– y O 4 Model Compounds Showing Anionic Redoxcitations
- 2018Competition between Metal Dissolution and Gas Release in Li-Rich Li 3 Ru y Ir 1– y O 4 Model Compounds Showing Anionic Redoxcitations
- 2016The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteriescitations
- 2013Palladium-silver mesowires for the extended detection of H2.citations
- 2009P-redox mechanism at the origin of the high lithium storage in NiP2-based batteriescitations
- 2007Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Propertiescitations
- 2006FeP : Another Attractive Anode for Li-Ion Battery Enlisting a Reversible Two-Step Insertion / Conversion Processcitations
- 2005On the Reactivity of Li8-yMnyP4 toward Lithiumcitations
- 2003Lithium-material comprising an intermetallic lithium/transition metal pnictide phase for lithium batteries. "The invention provides a rechargeable lithium-ion battery comprising the specific lithium composite exhibiting good charge-discharge cycle performance and mechanical properties. The lithium-material comprises an intermetallic lithium/transition metal".
Places of action
Organizations | Location | People |
---|
article
P-redox mechanism at the origin of the high lithium storage in NiP2-based batteries
Abstract
The Li reactivity of NiP<sub>2</sub> is investigated by means of electrochemical tests, in situ XRD, and <sup>31</sup>P NMR characterizations as well as first principles DFT calculations. A two-step insertion/conversion reaction is shown to transform the NiP<sub>2</sub> starting electrode into an intermediate Li<sub>2</sub>NiP<sub>2</sub> single phase and then to convert into the Li<sub>3</sub>P/Ni° nanocomposite. The ternary phase is fully characterized and is shown to be structurally very close to the starting NiP<sub>2</sub> regarding the Ni ions environment. This demonstrates that its formation results from a P-redox insertion mechanism associated with a very good reversibility. However, its nucleation upon delithiation from the fully converted Li<sub>3</sub>P/Ni composite is shown to be kinetically limited (poor structural relationship) which strongly suggests that restricted lithiation is required for best cycleability of the NiP<sub>2</sub>/Li cell.