Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Powell, A. S.

  • Google
  • 1
  • 4
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Switching on fast lithium ion conductivity in garnets131citations

Places of action

Chart of shared publication
Cussen, Edmund
1 / 17 shared
Ocallaghan, M. P.
1 / 2 shared
Titman, J. J.
1 / 1 shared
Chen, G. Z.
1 / 3 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Cussen, Edmund
  • Ocallaghan, M. P.
  • Titman, J. J.
  • Chen, G. Z.
OrganizationsLocationPeople

article

Switching on fast lithium ion conductivity in garnets

  • Cussen, Edmund
  • Powell, A. S.
  • Ocallaghan, M. P.
  • Titman, J. J.
  • Chen, G. Z.
Abstract

Polycrystalline samples of the garnets Li3+xNd3Te2-xSbxO12 have been prepared by high temperature solid state synthesis. X-ray and neutron powder diffraction data show that all compounds crystallize in the space group Ia3j d with lattice parameters in the range 12.55576(12) Å for x ) 0.05 to 12.6253(2) Å for x ) 1.5. The lithium is distributed over a mixture of oxide tetrahedra and heavily distorted octahedra. Increasing the lithium content in these compounds leads to the introduction of vacancies onto the tetrahedral position and an increasing concentration of lithium found in the octahedra. The latter exhibit considerable positional disorder with two lithium cations positions within each octahedron. Impedance measurements show fast ion conduction with an activation energy of ca. 0.59(6) eV that is largely invariant with composition. Solid-state Li NMR measurements indicate that there is no exchange of lithium between the different coordination environments. These results indicate that lithium conduction in the garnet structure occurs exclusively via a network of edge-linked distorted oxide octahedra and that the tetrahedrally coordination lithium plays no part in the transport properties.

Topics
  • impedance spectroscopy
  • compound
  • Lithium
  • activation
  • Nuclear Magnetic Resonance spectroscopy
  • space group