Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Suchomel, Matthew R.

  • Google
  • 2
  • 18
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Single-step sintering of zirconia ceramics using hydroxide precursors and Spark Plasma Sintering below 400 °C27citations
  • 2015Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics61citations

Places of action

Chart of shared publication
Estournes, Claude
1 / 6 shared
Elissalde, Catherine
1 / 79 shared
Fregeac, Arnaud
1 / 4 shared
Josse, Michaël
1 / 33 shared
Soubie, F.
1 / 2 shared
Majimel, Jérrôme
1 / 2 shared
Flaureau, Andréas
1 / 11 shared
Goglio, Graziella
1 / 34 shared
Chung, U-Chan
1 / 37 shared
Allix, Mathieu
1 / 52 shared
Saghir, Kholoud Al
1 / 2 shared
Massiot, Dominique
1 / 17 shared
Porcher, Florence
1 / 21 shared
Veron, Emmanuel
1 / 13 shared
Chenu, Sébastien
1 / 32 shared
Matzen, Guy
1 / 13 shared
Genevois, Cecile
1 / 12 shared
Fayon, Franck
1 / 20 shared
Chart of publication period
2019
2015

Co-Authors (by relevance)

  • Estournes, Claude
  • Elissalde, Catherine
  • Fregeac, Arnaud
  • Josse, Michaël
  • Soubie, F.
  • Majimel, Jérrôme
  • Flaureau, Andréas
  • Goglio, Graziella
  • Chung, U-Chan
  • Allix, Mathieu
  • Saghir, Kholoud Al
  • Massiot, Dominique
  • Porcher, Florence
  • Veron, Emmanuel
  • Chenu, Sébastien
  • Matzen, Guy
  • Genevois, Cecile
  • Fayon, Franck
OrganizationsLocationPeople

article

Transparency through Structural Disorder: A New Concept for Innovative Transparent Ceramics

  • Allix, Mathieu
  • Saghir, Kholoud Al
  • Massiot, Dominique
  • Porcher, Florence
  • Veron, Emmanuel
  • Chenu, Sébastien
  • Suchomel, Matthew R.
  • Matzen, Guy
  • Genevois, Cecile
  • Fayon, Franck
Abstract

Transparent polycrystalline ceramics present significant economical and functional advantages over single crystal materials for optical, communication, and laser technologies. To date, transparency in these ceramics is ensured either by an optical isotropy (i.e., cubic symmetry) or a nanometric crystallite size, and the main challenge remains to eliminate porosity through complex high pressure−high temperature synthesis. Here we introduce a new concept to achieve ultimate transparency reaching the theoretical limit. We use a controlled degree of chemical disorder in the structure to obtain optical isotropy at the micrometer length scale. This approach can be applied in the case of anisotropic structures and micrometer scale crystal size ceramics. We thus report Sr 1+x/2 Al 2+x Si 2−x O 8 (0 < x ≤ 0.4) readily scalable polycrystalline ceramics elaborated by full and congruent crystallization from glass. These materials reach 90% transmittance. This innovative method should drive the development of new highly transparent materials with technologically relevant applications.

Topics
  • impedance spectroscopy
  • single crystal
  • glass
  • glass
  • anisotropic
  • porosity
  • ceramic
  • crystallization