Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schaffer, Berhnard

  • Google
  • 1
  • 4
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015On the origin of nanochessboard superlattices in a-site-deficient ca-stabilized Nd2/3TiO324citations

Places of action

Chart of shared publication
Kepaptsoglou, Dm
1 / 47 shared
Azough, Feridoon
1 / 46 shared
Ramasse, Quentin M.
1 / 65 shared
Freer, Robert
1 / 61 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Kepaptsoglou, Dm
  • Azough, Feridoon
  • Ramasse, Quentin M.
  • Freer, Robert
OrganizationsLocationPeople

article

On the origin of nanochessboard superlattices in a-site-deficient ca-stabilized Nd2/3TiO3

  • Schaffer, Berhnard
  • Kepaptsoglou, Dm
  • Azough, Feridoon
  • Ramasse, Quentin M.
  • Freer, Robert
Abstract

<p>A-site deficient Nd<sub>2/3</sub>TiO<sub>3</sub> ceramics stabilized with CaTiO<sub>3</sub>, with an overall composition of 0.9 Nd<sub>2/3</sub>TiO<sub>3</sub>-0.1 CaTiO<sub>3</sub>, were synthesized by the mixed oxide route. Synchrotron X-ray diffraction was used to identify the basic perovskite structure and revealed cross-type superlattice reflections. An incommensurate superlattice structure with dimensions of a ≈ b ≈ 20a<sub>p</sub> and c = 2a<sub>p</sub> (where a<sub>p</sub> is the cell parameter for the parent perovskite phase) was identified, giving rise to contrast features resembling a nanochessboard pattern in electron microscopy images. The superlattice was further characterized by aberration-corrected scanning transmission electron microscopy (STEM): atomically resolved lattice images were obtained along «100» orientations to visualize the A-site (Ca, Nd, and vacancies) and B-site (Ti) cation column intensities, in correlation with observations of the nanochessboard superlattice. Electron energy loss spectroscopy (EELS) was used to precisely determine the distribution of Nd and Ca across the structure, confirming the absence of long-range elemental segregation or phase separation across the nanochessboard superstructure. Closer inspection of the chemical maps in two orthogonal directions, however, suggests the presence of localized ordering of cations and vacancies. The chessboard pattern superlattice is thus likely to be caused by periodic octahedral tilt distortions of the O sublattice, possibly induced by these short-range chemical variations, as a result of a complex interplay between cation and vacancy ordering in three dimensions.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • phase
  • x-ray diffraction
  • transmission electron microscopy
  • electron energy loss spectroscopy
  • vacancy