Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Turner, David R.

  • Google
  • 1
  • 7
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Ultramicroporous MOF with high concentration of vacant CuII sites32citations

Places of action

Chart of shared publication
Hawes, Chris S.
1 / 2 shared
Hill, Matthew R.
1 / 4 shared
Batten, Stuart R.
1 / 1 shared
Duyker, Samuel G.
1 / 2 shared
Thornton, Aaron W.
1 / 3 shared
Mccormick Mcpherson, Laura
1 / 6 shared
Peterson, Vanessa K.
1 / 5 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Hawes, Chris S.
  • Hill, Matthew R.
  • Batten, Stuart R.
  • Duyker, Samuel G.
  • Thornton, Aaron W.
  • Mccormick Mcpherson, Laura
  • Peterson, Vanessa K.
OrganizationsLocationPeople

article

Ultramicroporous MOF with high concentration of vacant CuII sites

  • Hawes, Chris S.
  • Hill, Matthew R.
  • Turner, David R.
  • Batten, Stuart R.
  • Duyker, Samuel G.
  • Thornton, Aaron W.
  • Mccormick Mcpherson, Laura
  • Peterson, Vanessa K.
Abstract

<p>An ultramicroporous metal-organic framework (MOF) is reported that contains 0.35 nm nanotube-like channels with an unprecedented concentration of vacant Cu<sup>II</sup> coordination sites. The nonintersecting, narrow channels in [Cu<sub>3</sub>(cdm)<sub>4</sub>] (cdm = C(CN)<sub>2</sub>(CONH<sub>2</sub>)<sup>-</sup>) align in two perpendicular directions, structurally resembling copper-doped carbon nanotubes with Cu<sup>II</sup> embedded in the walls of the channels. The combination of ultramicroporosity with the exposed Cu<sup>II</sup> coordination sites gives size-based selectivity of CO<sub>2</sub> over CH<sub>4</sub>, based on pore-size distribution and modeling. Neutron powder diffraction and molecular dynamics simulations show the close packing of single rows of guests within the tubular nanostructure and interaction of CO<sub>2</sub> with the exposed metal sites.</p>

Topics
  • impedance spectroscopy
  • pore
  • Carbon
  • nanotube
  • simulation
  • molecular dynamics
  • copper