People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hadermann, Joke
University of Antwerp
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenizationcitations
- 2024Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction datacitations
- 2024Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2by Tungsten Selenization.citations
- 2023Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1–x (x = 0.08, 0.2) with a layered perovskite networkcitations
- 2022The crystal and defect structures of polar KBiNb 2 O 7
- 2022The crystal and defect structures of polar KBiNb2O7
- 2022Topotactic redox cycling in SrFeO 2.5+δ explored by 3D electron diffraction in different gas atmospherescitations
- 2022Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6citations
- 2021Structural and magnetic properties of the perovskites A₂LaFe₂SbO₉ (A = Ca, Sr, Ba)citations
- 2021Determination of Spinel Content in Cycled Li1.2Ni0.13Mn0.54Co0.13O2 Using Three-Dimensional Electron Diffraction and Precession Electron Diffractioncitations
- 2021Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr₃ nanocrystalscitations
- 2021Antiferromagnetic Order Breaks Inversion Symmetry in a Metallic Double Perovskite, Pb2NiOsO6citations
- 2020Compatibility of $Zr_{2}AlC$ MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutectic
- 2020Ambient and high pressure CuNiSb₂citations
- 2020Compatibility of Zr2AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutecticcitations
- 2020Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzerscitations
- 2020Atomic and electronic structure of a multidomain GeTe crystalcitations
- 2020Compatibility of Zr<sub>2</sub>AlC MAX phase-based ceramics with oxygen-poor, static liquid lead-bismuth eutecticcitations
- 2020Magnetic ordering in the layered Cr(II) oxide arsenides Sr₂CrO₂Cr₂As₂ and Ba₂CrO₂Cr₂As₂citations
- 2020Investigating the effect of sulphurization on volatility of compositions in Cu-poor and Sn-rich CZTS thin filmscitations
- 2019Synthesis and Characterization of Double Solid Solution (Zr,Ti) 2 (Al,Sn)C MAX Phase Ceramicscitations
- 2019Synthesis and Characterization of Double Solid Solution (Zr,Ti)(2)(Al,Sn)C MAX Phase Ceramicscitations
- 2019Interstitial defects in the van der Waals gap of Bi2Se3citations
- 2018MnFe0.5Ru0.5O3: An Above-Room-Temperature Antiferromagnetic Semiconductorcitations
- 2018Complex magnetic ordering in the oxide selenide Sr2Fe3Se2O3citations
- 2017Grain-boundary engineering for aging and slow-crack-growth resistant zirconiacitations
- 2017Synthesis of MAX Phases in the Zr-Ti-Al-C Systemcitations
- 2016Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilationcitations
- 2016Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 filmscitations
- 2016Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations
- 2015Effect of selenium content of CuInSex alloy nanopowder precursors on recrystallization of printed CuInSe2 absorber layers during selenization heat treatmentcitations
- 2015Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se-2 solar cellscitations
- 2015Co-rich ZnCoO nanoparticles embedded in wurtzite <tex>$Zn_{1-x}Co_{x}O$</tex> thin filmscitations
- 2015Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigationscitations
- 2015Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregationcitations
- 2014Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cellscitations
- 2014Crystal Structure and Luminescent Properties of R2-xEux(MoO4)(3) (R = Gd, Sm) Red Phosphorscitations
- 2014Influence of the structure on the properties of <tex>$Na_{x}Eu_{y}(MoO_{4})_{z}$</tex> red phosphorscitations
- 2012Artificial construction of the layered Ruddlesden–Popper Manganite La2Sr2Mn3O10by reflection high energy electron diffraction monitored pulsed laser deposition
- 2011Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr5BiNi2O9.6citations
Places of action
Organizations | Location | People |
---|
article
Influence of the structure on the properties of <tex>$Na_{x}Eu_{y}(MoO_{4})_{z}$</tex> red phosphors
Abstract
Scheelite related compounds (A',A '')(n)[(B',B '')O-4](m) with B', B '' = W and/or Mo are promising new materials for red phosphors in pc-WLEDs (phosphor-converted white-light-emitting-diode) and solid-state lasers. Cation substitution in CaMoO4 of Ca2+ by the combination of Na+ and Eu3+, with the creation of A cation vacancies, has been investigated as a factor for controlling the scheelite-type structure and the luminescent properties. Na5Eu(MoO4)(4) and NaxEu(2-x)/33+square(2-x)/3MoO4 (0.138 <= x <= 0.5) phases with a scheelite-type structure were synthesized by the solid state method; their structural characteristics were investigated using transmission electron microscopy. Contrary to powder synchrotron X-ray diffraction before, the study by electron diffraction and high resolution transmission electron microscopy in this paper revealed that Na0.286Eu0.571MoO4 has a (3 + 2)D incommensurately modulated structure and that (3 + 2)D incommensurately modulated domains are present in Na0.200Eu0.600MoO4. It also confirmed the (3 + 1)D incommensurately modulated character of Na(0.138)Eu(0.621)Mo04. The luminescent properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of these phosphors show the strongest absorption at about 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The emission spectra indicate an intense red emission due to the D-5(0) -> F-7(2) transition of Eu3+, with local minima in the intensity at Na0.286Eu0.571MoO4 and Na0.200Eu0.600MoO4 for similar to 613 nm and similar to 616 nm bands. The phosphor Na5Eu(MoO4)(4) shows the brightest red light emission among the phosphors in the Na2MoO4-Eu2/3MoO4 system and the maximum luminescence intensity of Na5Eu(MoO4)(4) (lambda(ex) = 395 nm) in the D-5(0) -> F-7(2) transition region is close to that of the commercially used red phosphor YVO4:Eu3+ (lambda(ex) = 326 nm). Electron energy loss spectroscopy measurements revealed the influence of the structure and Na/Eu cation distribution on the number and positions of bands in the UV-optical-infrared regions of the EELS spectrum.