People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Sunil R. Sarath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3citations
- 2014Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayerscitations
- 2013High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium dopingcitations
Places of action
Organizations | Location | People |
---|
article
Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers
Abstract
A novel superlattice structure based on epitaxial nanoscale layers of NbOx and Nb-doped SrTiO3 is fabricated using a layer-by-layer approach on lattice matched LAO substrates. The absolute Seebeck coefficient and electrical conductivity of the [(NbOx) a/(Nb-doped SrTiO3)b]20 superlattices (SLs) were found to increase with decreasing layer thickness ratio (a/b ratio), reaching, at high temperatures, a power factor that is comparable to epitaxial Nb-doped SrTiO3 (STNO) films (∼0.7 W m-1 K-1). High temperature studies reveal that the SLs behave as n-type semiconductors and undergo an irreversible change at a varying crossover temperature that depends on the a/b ratio. By use of high resolution X-ray photoelectron spectroscopy and X-ray diffraction, the irreversible changes are identified to be due to a phase transformation from cubic NbO to orthorhombic Nb2O5, which limits the highest temperature of stable operation of the superlattice to 950 K. © 2014 American Chemical Society.