People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hämäläinen, Jani Marko Antero
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019How insignificant modifications of photocatalysts can significantly change their photocatalytic activitycitations
- 2018Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Depositioncitations
- 2018Atomic Layer Deposition of Rhenium Disulfidecitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer depositioncitations
- 2014Atomic Layer Deposition of Noble Metals and Their Oxidescitations
- 2013Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactantscitations
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2012Atomic layer deposited iridium oxide thin film as microelectrode coating in stem cell applicationscitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition and Characterization of Aluminum Silicate Thin Films for Optical Applicationscitations
- 2010pH electrode based on ALD deposited iridium oxidecitations
- 2009Metallic Ir, IrO2 and Pt Nanotubes and Fibers by Electrospinning and Atomic Layer Deposition
- 2009Study on atomic layer deposition of amorphous rhodium oxide thin filmscitations
- 2009Atomic layer deposition of iridium thin films by consecutive oxidation and reduction stepscitations
- 2008Atomic layer deposition of iridium oxide thin films from Ir(acac)₃ and ozonecitations
- 2008Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt(acac)₂ and ozonecitations
Places of action
Organizations | Location | People |
---|
article
Atomic Layer Deposition of Noble Metals and Their Oxides
Abstract
Atomic layer deposition (ALD) is an attractive method to deposit thin films for advanced technological applications such as microelectronics and nanotechnology. One material group in ALD that has matured in 10 years and proven to be of wide technological importance is noble metals. In this paper, thermal ALD of noble metals and their oxides is reviewed. Noble metal films are mostly grown using O2 as the nonmetal precursor in a combustion-type chemistry. Alternatively, lower growth temperatures can be reached via noble metal oxide growth with consecutive reactions with ozone and H2. The use of true reducing chemistry (i.e., H2) is typical only for ALD of palladium at low temperatures. On the other hand, ALD of noble metal oxides has been limited with reactants such as ozone and O2 gas. In this review, reaction mechanisms in various types of processes are discussed and issues in nucleation are addressed. Deposition temperatures, film growth rates, and purities as well as evaporation temperatures used for noble metal precursors are tabulated for comparison.