People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
La, Carole
Laboratoire de Planétologie et Géosciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Crystal structures, frustrated magnetism, and chemical pressure in Sr-doped Ba$_3$ Ni Sb$_2$ O$_9$ perovskitescitations
- 2022Predicting iodine solubility at high pressure in borosilicate nuclear waste glasses using optical basicity: an experimental studycitations
- 2012Increasing the phase-transition temperatures in spin-frustrated multiferroic MnWO4 by Mo dopingcitations
Places of action
Organizations | Location | People |
---|
article
Increasing the phase-transition temperatures in spin-frustrated multiferroic MnWO4 by Mo doping
Abstract
International audience ; Ceramic samples of MnW1-xMoxO4 (x ≤ 0.3) solid solution were prepared by a solid-state route with the goal of increasing the magnitude of the spin-exchange couplings among the Mn2+ ions in the spin spiral multiferroic MnWO4. Samples were characterized by X-ray diffraction, optical spectroscopy, magnetization, and dielectric permittivity measurements. It was observed that the Néel temperature TN, the spin spiral ordering temperature TM2, and the ferroelectric phase-transition temperature TFE2 of MnWO4 increased upon the nonmagnetic substitution of Mo6+ for W6+. Like pure MnWO4, the ferroelectric critical temperature TFE2(x) coincides with the magnetic ordering temperature TM2(x). A density functional analysis of the spin-exchange interactions for a hypothetical MnMoO4 that is isostructural with MnWO4 suggests that Mo substitution increases the strength of the spin-exchange couplings among Mn2+ in the vicinity of a Mo6+ ion. Our study shows that the Mo-doped MnW1-xMoxO4 (x ≤ 0.3) compounds are spin-frustrated materials that have higher magnetic and ferroelectric phase-transition temperatures than does pure MnWO4.