Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiefer, Florian

  • Google
  • 2
  • 9
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Bulk Synthesis and Structure of a Microcrystalline Allotrope of Germanium (m-allo-Ge)40citations
  • 2010Synthesis, structure, and electronic properties of 4H-germanium38citations

Places of action

Chart of shared publication
Karttunen, Antti J.
2 / 40 shared
Faessler, Thomas F.
2 / 4 shared
Doeblinger, Markus
1 / 2 shared
Haeussermann, Ulrich
1 / 2 shared
Hlukhyy, Viktor
1 / 8 shared
Scherer, Wolfgang
1 / 6 shared
Gold, Christian
1 / 1 shared
Scheidt, Ernst-Wilhelm
1 / 2 shared
Nylen, Johanna
1 / 1 shared
Chart of publication period
2011
2010

Co-Authors (by relevance)

  • Karttunen, Antti J.
  • Faessler, Thomas F.
  • Doeblinger, Markus
  • Haeussermann, Ulrich
  • Hlukhyy, Viktor
  • Scherer, Wolfgang
  • Gold, Christian
  • Scheidt, Ernst-Wilhelm
  • Nylen, Johanna
OrganizationsLocationPeople

article

Bulk Synthesis and Structure of a Microcrystalline Allotrope of Germanium (m-allo-Ge)

  • Karttunen, Antti J.
  • Faessler, Thomas F.
  • Kiefer, Florian
  • Doeblinger, Markus
Abstract

<p>An easy to reproduce and scale-up method for the preparation of a microcrystalline allotrope of germanium is presented. Based on the report of the oxidation of a single crystal of Li(7)Gen(12) the synthesis and structure determination of a powdered sample of Li(7)Ge(12) is investigated. Besides the known oxidation of Li(7)Gen(12) with benzophenone a variety of protic solvents such as alcohols and water were used as oxidants. Electron energy loss spectroscopy (EELS) proves that the reaction products do not contain Li. The structure determination of the powder samples based on selected area electron diffraction (SAED), powder X-ray diffraction, quantum chemical calculations (DFT-B3LYP level of theory), and simulated powder X-ray diffraction diagrams obtained using the DIFFaX and FAULTS software packages show that the microcrystalline powders do not match any of the existing structures of germanium including the rough model of so-called allo-Ge. It is shown that the structural motif of layered Ge slabs of the precursor Li(7)Ge(12) that contain five-membered rings is retained in microcrystalline allo-Ge (m-allo-Ge). The covalent connectivity between the slabs and the statistic of the layer sequence is determined. According to B3LYP-DFT calculations of a periodic approximate model a direct band gap is expected for m-allo-Ge.</p>

Topics
  • impedance spectroscopy
  • single crystal
  • theory
  • electron diffraction
  • layered
  • powder X-ray diffraction
  • density functional theory
  • alcohol
  • electron energy loss spectroscopy
  • Germanium