Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Benight, Stephanie J.

  • Google
  • 1
  • 7
  • 125

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Systematic nanoengineering of soft matter organic electro-optic materials125citations

Places of action

Chart of shared publication
Jr., Daniel B. Knorr
1 / 1 shared
Eichinger, Bruce E.
1 / 4 shared
Kosilkin, Ilya
1 / 3 shared
Robinson, Bruce H.
1 / 6 shared
Johnson, Lewis E.
1 / 1 shared
Dalton, Larry R.
1 / 10 shared
Overney, René M.
1 / 2 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Jr., Daniel B. Knorr
  • Eichinger, Bruce E.
  • Kosilkin, Ilya
  • Robinson, Bruce H.
  • Johnson, Lewis E.
  • Dalton, Larry R.
  • Overney, René M.
OrganizationsLocationPeople

article

Systematic nanoengineering of soft matter organic electro-optic materials

  • Jr., Daniel B. Knorr
  • Eichinger, Bruce E.
  • Kosilkin, Ilya
  • Benight, Stephanie J.
  • Robinson, Bruce H.
  • Johnson, Lewis E.
  • Dalton, Larry R.
  • Overney, René M.
Abstract

An overview of the development and utilization of organic electro-optic materials is presented with emphasis on the role played by quantum and statistical mechanical calculations in understanding critical structure/function relationships that have guided the improvement of such materials over the past two decades. This review concentrates largely on three classes of organic electro-optic materials prepared by electric field poling of materials near their glass transition temperature: (1) chromophore/polymer composite materials, (2) dendrimers and polymers containing covalently incorporated chromophores, and (3) matrix-assisted-poling (MAP) materials where specific spatially anisotropic interactions enhance poling efficiency. In particular, the role of chromophore shape, restrictions on chromophore motion associated with covalent bonds, and lattice dimensionality effects are reviewed. The role of device design and auxiliary properties (optical loss, thermal stability, photochemical stability, processability) in influencing the utilization of organic electro-optic materials is also briefly reviewed. © 2010 American Chemical Society.

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • anisotropic
  • composite
  • glass transition temperature
  • dendrimer