Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lynham, D. R.

  • Google
  • 1
  • 2
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Magnetic order arising from structural distortion: the structure and magnetic properties of Ba2LnMoO659citations

Places of action

Chart of shared publication
Cussen, Edmund
1 / 17 shared
Rogers, J.
1 / 1 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Cussen, Edmund
  • Rogers, J.
OrganizationsLocationPeople

article

Magnetic order arising from structural distortion: the structure and magnetic properties of Ba2LnMoO6

  • Cussen, Edmund
  • Rogers, J.
  • Lynham, D. R.
Abstract

The compounds Ba2LnMoO6 (Ln ) Nd, Sm, Eu, Gd, Dy, Y, Er, and Yb) have been synthesized by solid-state techniques under reducing conditions at temperatures up to 1300 °C. Rietveld analyses of X-ray and neutron powder diffraction data show that these compounds adopt cation-ordered perovskite<br/>phases. At room temperature Ba2NdMoO6 and Ba2SmMoO6 adopt tetragonally distorted structures in the space groups I4/m and I4/mmm, respectively, while the data collected from all other compounds could be fitted in the cubic space group Fm3hm. Bond valence sums show that the observed tetragonal distortions<br/>are driven by the bonding requirements of Ba2+. Neutron powder diffraction data collected below TN ) 15(1) K show that Ba2NdMoO6 is triclinically distorted (I1h: a ) 5.9790(2) Å, b ) 5.9840(2) Å, c ) 8.6024(2) Å, R ) 89.854(2)°, â ) 90.056(5)°, ç ) 90.003(5)°) and that Nd3+ and Mo5+ are antiferromagnetically ordered. Magnetic susceptibility data show that this compound behaves as a Curie-<br/>Weiss paramagnet above this temperature, and no other compounds in the series show evidence of magnetic order down to 2 K. Ba2YMoO6 and Ba2YbMoO6 both remain entirely paramagnetic to 2 K due to perfect geometric frustration of the cubic lattice, indicating that next-nearest-neighbor interactions between like cations dominate over nearest-neighbor Mo-O-Ln exchange. The magnetic structure of Ba2NdMoO6 is rationalized with reference to the splitting of the t2g manifold of Mo5+ by the Jahn-Teller distortion and<br/>the associated introduction of anisotropic magnetic superexchange.

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • phase
  • anisotropic
  • susceptibility
  • space group