People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malinowski, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Self-Organized, Rodlike, Micrometer-Scale Microstructure of Tb3Sc2Al3O12−TbScO3:Pr Eutectic
Abstract
The self-organized rodlike microstructure of terbium-scandium-aluminum garnet?terbium-scandium perovskite, Tb3Sc2Al3O12?TbScO3, eutectic crystals has been studied. The growth of the eutectic by the micro-pulling down method is presented. The obtained self-organized dielectric microstructure is made of perovskite fibers embedded in a garnet phase matrix. The crystal quality of both phases is confirmed by the structural analysis. Both phases can be etched away, depending on the composition, leaving a pseudo-hexagonally packed dielectric array of pillars or an array of pseudo-hexagonally packed holes in dielectric material. Both structures can be filled with metal or another material and, hence, have possible metamaterials or photonic crystals applications.