People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dupont, Loic
French National Institute for Industrial Environment and Risks
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Combining 3D printing of copper current collectors and electrophoretic deposition of electrode materials for structural lithium-ion batteriescitations
- 2024Mesoscopic Model of Extrusion during Solvent‐Free Lithium‐ion Battery Electrode Manufacturingcitations
- 2023Mesoscopic Model of Extrusion during Solvent-Free Li-Ion Battery Electrode Manufacturing
- 2021Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modelingcitations
- 2021Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusioncitations
- 2020Overview on Lithium-Ion Battery 3D-Printing By Means of Material Extrusioncitations
- 2020Poly(Ethylene Oxide)-LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printingcitations
- 2018Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printingcitations
- 2017Vanadyl-type defects in Tavorite-like NaVPO4F: from the average long range structure to local environmentscitations
- 2016Corrosive properties of liquid fractions issued from lignocellulosic biomass pretreatment with ionic liquids
- 2014Preparation, structure and electrochemistry of LiFeBO3: a cathode material for Li-ion batteriescitations
- 2006Electrochemical Reactivity of Li2VOSiO4 toward Licitations
- 2006Benefits of carbon addition on the hydrogen absorption properties of Mg-based thin films grown by pulsed laser deposition
- 2005On the Reactivity of Li8-yMnyP4 toward Lithiumcitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical Reactivity of Li2VOSiO4 toward Li
Abstract
We report on the chemical/electrochemical reactivity of the insulating layered V-based silicate-phase Li2VOSiO4 toward Li. The silicate phase, made by a ceramic approach and consisting of 5−20 μm agglomerates, exhibits only a slight reactivity with Li in chemical or electrochemical reactions. By ball milling Li2VOSiO4 in the presence of carbon, we succeeded in preparing composites that reversibly react with 0.7 Li+ per unit formula at an average voltage of 3.6 V vs Li+/Li0. This electrochemical reactivity was chemically mimicked using NO2BF4 or Br2 and LiI as oxidizing and reducing agents, respectively. Through a combination of X-rays and HRTEM measurements, we showed that the insertion−deinsertion mechanism is a two-phase process with poor kinetics. The delithiated phase crystallizes in space group P4 (a = 6.206 Å, c = 4.5715Å), whereas the precursor lithiated phase crystallizes in P4/nmm (a = 6.366(9) Å, c = 4.456(6) Å). Because silicates such as phosphates are cheap and can also be made redox-active by carbon coatings, they should not be overlooked as possible electrode candidates in future research.