People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vijayaraghavan, Aravind S.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Investigating the Effects of Graphene Nanoplatelets (GNPs) and external Waterbased Crosslinker (eWCL) on the Mechanical and Thermal properties of Waterbased Elastomer (WBE) Nanocomposites
- 2023Graphene Nanoplatelets (GNPs) Enhanced Water-based Elastomer Nanocomposites -tailored production from Nanoscale to Macrostructures
- 2021Hybrid molecular/mineral lyotropic liquid crystal system of CTAB and graphene oxide in watercitations
- 2021Graphene and Water-Based Elastomer Nanocomposites – A Reviewcitations
- 2021High-grip and hard-wearing graphene reinforced polyurethane coatings
- 2018Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: effect of lateral flake size and chemical functionalizationcitations
- 2018Impeded physical aging in PIM-1 membranes containing graphene-like fillerscitations
- 2018Graphene oxide films for field effect surface passivation of silicon for solar cellscitations
- 2018Ternary nanocomposites of reduced graphene oxide, polyaniline and hexaniobate: hierarchical architecture and high polaron formationcitations
- 2017Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillerscitations
- 2016Graphene and water-based elastomers thin-film composites by dip-mouldingcitations
- 2013Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.citations
- 2006Ionic liquid-derived blood-compatible composite membranes for kidney dialysiscitations
- 2005Synthesis and characterization of thickness-aligned carbon nanotube - polymer composite filmscitations
- 2005Embedded carbon-nanotube-stiffened polymer surfacescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of thickness-aligned carbon nanotube - polymer composite films
Abstract
To optimize the properties of carbon nanotube-polymer composites, it is important to control nanotube dispersion and alignment, One way to achieve such control is by growing homogeneous, well-aligned arrays of carbon nanotubes using chemical vapor deposition and infiltrating polymer or monomer into the arrays, followed by in situ polymerization. In this paper, pre-aligned multiwalled carbon nanotube arrays were infiltrated with methyl methacrylate (MMA) and the MMA was polymerized. The resulting composite films have well-dispersed, aligned nanotubes. Using the Washburn technique, it was found that the infiltration of monomers into aligned nanotube arrays is largely driven by the wetting of liquids against the nanotube walls and the low viscosity of liquids. Once polymerized, the PMMA had higher thermal stability. This synthesis process is adaptable to various polymers. It is possible to combine conventional micro-patterning techniques with infiltration process for achieving selective infiltration of polymer across nanotube arrays. Thus, the present synthesis strategy has tremendous implications toward building some of the novel architectures with nanotubes and polymers, having unique properties. © 2005 American Chemical Society.