Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Forch, R.

  • Google
  • 2
  • 7
  • 124

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Adhesion improvement of plasma-polymerized maleic anhydride films on gold using HMDSO/O-2 adhesion layers14citations
  • 2002Chemical structure and properties of plasma-polymerized maleic anhydride films110citations

Places of action

Chart of shared publication
Chifen, A. N.
1 / 1 shared
Jenkins, Toby
2 / 8 shared
Knoll, W.
2 / 9 shared
Hu, J.
1 / 32 shared
Schiller, S.
1 / 4 shared
Sanchez-Estrada, F. S.
1 / 1 shared
Timmons, R. B.
1 / 2 shared
Chart of publication period
2007
2002

Co-Authors (by relevance)

  • Chifen, A. N.
  • Jenkins, Toby
  • Knoll, W.
  • Hu, J.
  • Schiller, S.
  • Sanchez-Estrada, F. S.
  • Timmons, R. B.
OrganizationsLocationPeople

article

Chemical structure and properties of plasma-polymerized maleic anhydride films

  • Hu, J.
  • Schiller, S.
  • Sanchez-Estrada, F. S.
  • Timmons, R. B.
  • Jenkins, Toby
  • Knoll, W.
  • Forch, R.
Abstract

Plasma-assisted polymerization of maleic anhydride has been investigated under different experimental conditions. Significant variations in the film chemical structure and the film properties were obtained using pulsed plasma depositions operated at different duty cycles. The film chemical structures were obtained using X-ray photoelectron spectroscopy (XPS) and Fourier transform infra red spectroscopy (FT-IR). Surface derivatization. reactions using decylamine and benzylamine were used to demonstrate their surface reactivity toward nucleophilic moieties and to change the surface free energy of the plasma polymer films, all of which are of particular interest for future applications in the attachment of biological molecules and cells. A method of substrate pretreatment was developed to ensure reliable binding between the substrate and the plasma polymer film in aqueous solution. Impedance spectroscopy was used to monitor polymer film changes in aqueous media. The hydrated films showed some resemblance to polyelectrolyte films and a clear correlation could be observed between the density of anhydride groups and the behavior of the films in solution.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • x-ray photoelectron spectroscopy