People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Esperança, José Manuel Silva Simões
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Multifunctional magnetoelectric sensing and bending actuator response of polymer-based hybrid materials with magnetic ionic liquidscitations
- 2023CO2 hydrates phase behaviour and onset nucleation temperatures in mixtures of H2O and D2Ocitations
- 2022Structural organization of ionic liquids embedded in fluorinated polymerscitations
- 2021Photocurable temperature activated humidity hybrid sensing materials for multifunctional coatingscitations
- 2020Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Responsecitations
- 2020Chitosan polymer electrolytes doped with a dysprosium ionic liquidcitations
- 2020QSPR Modeling of Liquid-liquid Equilibria in Two-phase Systems of Water and Ionic Liquidcitations
- 2019Ionic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene fluoride)-Based Soft Actuatorscitations
- 2019Ionic-liquid-based printable materials for thermochromic and thermoresistive applicationscitations
- 2018Low-field giant magneto-ionic response in polymer-based nanocompositescitations
- 2017Playing with ionic liquids to uncover novel polymer electrolytescitations
- 2017Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquidscitations
- 2017Polymer electrolytes for electrochromic devices through solvent casting and sol-gel routescitations
- 2017Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytescitations
- 2017A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytescitations
- 2016Imidazolium-based ionic liquid type dependence of the bending response of polymer actuatorscitations
- 2016Electromechanical actuators based on poly(vinylidene fluoride) with [N1 1 1 2(OH)][NTf2] and [C2mim] [C2SO4]citations
- 2016Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applicationscitations
- 2015High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride)citations
- 2015Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blendscitations
- 2015Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes propertiescitations
- 2014Generating ionic liquids from ionic solidscitations
- 2014Ionic liquids for solid-state electrolytes and electrosynthesiscitations
- 2013Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N-1 1 1 2(OH)][NTf2] ionic liquid for energy storage applicationscitations
- 2013Thermophysical and magnetic studies of two paramagnetic liquid salts: [C(4)mim][FeCl4] and [P-66614][FeCl4]citations
- 2013Electrochemical applications of electrolytes based on ionic liquidscitations
- 2012Synthesis and electrochemical characterization of aPEO-based polymer electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Generating ionic liquids from ionic solids
Abstract
<p>Mixtures of ionic liquids (ILs) allow enlarging the plethora of the physical and chemical properties of these materials in addition to the well-known tunable character associated with pure compounds. It is shown here that mixtures also induce a significant decrease of the melting points of the mixture to values well below those of the original compounds allowing the tuning of the melting point of an ionic liquid mixture and the generation of novel ionic liquids from mesotherm salts. This work evaluates the melting behavior of mixtures of seven hexafluorophosphate-based compounds combined with imidazolium-, pyridinium-, pyrrolidinium-, piperidinium- ammonium-, or phosphonium-based cations. The solid-liquid equilibrium phase diagrams of nine of their binary mixtures were measured using optical microscopy and differential scanning calorimetry. The pure ILs melting profile reveals the presence of polymorphs with highly energetic solid-solid transitions that are relevant for the evaluation of these systems. The phase diagrams reported here also allow an investigation on the nonideality of the mixtures of ionic liquids. A classical thermodynamic approach shows that while most of the mixtures investigated present an ideal liquid behavior, others show slight or even marked nonideal profiles. One particular system, [C<sub>3</sub>mpyr][PF<sub>6</sub>] (1-methyl-1-propylpyrrolidinium hexafluorophosphate) + [C<sub>3</sub>mpip] [PF<sub>6</sub>] (1-methyl-1-propylpiperidinium hexafluorophosphate), displays a continuous solid solution as established by differential scanning calorimetry, powder X-ray diffraction, and crystallographic data being one of the few ionic liquid alloys ever reported.</p>