Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Zizheng K.

  • Google
  • 1
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Hydroxypropyl methylcellulose as a novel tool for isothermal solution crystallization of micronized paracetamol17citations

Places of action

Chart of shared publication
Reis, Cassilda M.
1 / 1 shared
Reis, Nuno
1 / 5 shared
Mackley, Malcolm R.
1 / 5 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Reis, Cassilda M.
  • Reis, Nuno
  • Mackley, Malcolm R.
OrganizationsLocationPeople

article

Hydroxypropyl methylcellulose as a novel tool for isothermal solution crystallization of micronized paracetamol

  • Reis, Cassilda M.
  • Liu, Zizheng K.
  • Reis, Nuno
  • Mackley, Malcolm R.
Abstract

Pulmonary inhalation is increasingly being selected as a preferred route for the delivery of both small and large drug macromolecules for the treatment of a range of pathologies. The direct crystallization of micronized powders, in particular, paracetamol, remains difficult, as it requires the ability to work in high solution supersaturations where agglomeration, wall crusting, and heterogeneous nucleation hinder the control of crystal size and crystal size distribution. Polymer additives are recognized to help drive the production of a given polymorph or controlling crystal shape by means of adsorption on the crystal surface. With the aim of exploiting the polymer-control nucleation and growth of crystals for enhanced direct crystallization of micronized powders, batch cooling crystallization of paracetamol in water was carried out in the presence of 0.1–0.8% w/w hydroxypropyl methylcellulose (HPMC). In the presence of polymer, the onset of nucleation was delayed and extended beyond the cooling time of the solution, resulting in an isothermal cooling crystallization and the production of micronized paracetamol with a mean crystal size D50, in the range of 15–20 μm and an improved crystal size distribution. Equally, the rate generation of solution cloudiness was reduced by over 3-fold for the highest HPMC concentration tested, with no detectable impact on final product yield. The mechanisms for nucleation delay and growth inhibition by HPMC is unknown; however, a modification of crystal’s shape observed upon the addition of HPMC to the solution suggested it might be related to mass transfer limitations and intermolecular hydrogen bonding between the large HPMC and the small drug molecules. This technique can potentially be used for direct crystallization of other micronized drugs.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Hydrogen
  • crystallization