People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ménard, Hervé
University of Dundee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Molecularly Imprinted Viral Protein Integrated Zn-Cu-In-Se-P Quantum Dots Superlattice for Quantitative Ratiometric Electrochemical Detection of SARS-COV-2 Spike Protein in Salivacitations
- 2020Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayercitations
- 2019Coordination controlled electrodeposition and patterning of layers of palladium/copper nanoparticles on top of a self-assembled monolayercitations
- 2017Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticlescitations
- 2015Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolutioncitations
- 2013In situ growth of nanoparticles through control of non-stoichiometrycitations
- 2012Facile Synthesis of Branched Ruthenium Nanocrystals and Their Use in Catalysiscitations
Places of action
Organizations | Location | People |
---|
article
Facile Synthesis of Branched Ruthenium Nanocrystals and Their Use in Catalysis
Abstract
Our novel and facile synthesis of ruthenium nanostars opens the door to the shape control of previously inaccessible sophisticated and monodisperse ruthenium nanomaterials. The metallic state and hexagonal close-packed (hcp) structure of the Ru nanostars, which are approximately 15 nm across, were determined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). These materials can also act as seeds for the first preparation of ruthenium nanourchins. In addition, we have shown that they are as catalysts for the activation of CO and C?C bonds, since Fischer-Tropsch and solvent-free hydrogenation reactivities were observed on these unsupported materials.