People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Laaksonen, Päivi
Häme University of Applied Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022The performance of flax reinforced composites for wireless and sport applications : natural additives and sandwich concepts
- 2020Genetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performancecitations
- 2019Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2019Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2019Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterialscitations
- 2018Modification of carbon nanotubes by amphiphilic glycosylated proteinscitations
- 2018Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2018Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Filmscitations
- 2015Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterialscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
- 2014Structural characterization and tribological evaluation of quince seed mucilagecitations
- 2013The role of hemicellulose in nanofibrillated cellulose networkscitations
- 2013Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogelscitations
- 2012Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfacescitations
- 2012Facile method for stiff, tough, and strong nanocomposites by direct exfoliation of multilayered graphene into native nanocellulose matrixcitations
- 2011Genetic engineering of biomimetic nanocompositescitations
- 2011Genetic engineering of biomimetic nanocomposites:Diblock proteins, graphene, and nanofibrillated cellulosecitations
Places of action
Organizations | Location | People |
---|
article
Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions
Abstract
Biological composites are typically based on an adhesive matrix that interlocks rigid reinforcing elements in fiber composite or brick-and-mortar assemblies. In nature, the adhesive matrix is often made up of proteins, which are also interesting model systems, as they are unique among polymers in that we know how to engineer their structures with atomic detail and to select protein elements for specific interactions with other components. Here we studied how fusion proteins that consist of cellulose binding proteins linked to proteins that show a natural tendency to form multimer complexes act as an adhesive matrix in combination with nanofibrillated cellulose. We found that the fusion proteins are retained with the cellulose and that the proteins mainly affect the plastic yield behavior of the cellulose material as a function of water content. Interestingly, the proteins increased the moisture absorption of the composite, but the well-known plastifying effect of water was clearly decreased. The work helps to understand the functional basis of nanocellulose composites as materials and aims toward building model systems for molecular biomimetic materials.