People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caruso, Frank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Protease-Responsive Hydrogel Microparticles for Intradermal Drug Deliverycitations
- 2020Protein Component of Oyster Glycogen Nanoparticlescitations
- 2019The future of layer-by-layer assembly: A tribute to ACS Nano associate editor Helmuth Möhwaldcitations
- 2019Glycogen as a building block for advanced biological materialscitations
- 2018Metal-Organic Frameworks for Cell and Virus Biologycitations
- 2015Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligandscitations
- 2015Nanoporous Metal-Phenolic Particles as Ultrasound Imaging Probes for Hydrogen Peroxide.citations
- 2014Tuning particle biodegradation through polymer-peptide blend compositioncitations
- 2012Tailoring the Chain Packing in Ultrathin Polyelectrolyte Films Formed by Sequential Adsorptioncitations
- 2012Synthesis and functionalization of nanoengineered materials using click chemistrycitations
- 2012Engineering cellular degradation of multilayered capsules through controlled cross-linkingcitations
- 2011Nanoengineered films via surface-confined continuous assembly of polymerscitations
- 2009Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsulescitations
- 2009Tuning the formation and degradation of layer-by-layer assembled polymer hydrogel microcapsulescitations
- 2009Stabilization and functionalization of polymer multilayers and capsules via thiol-ene click chemistrycitations
- 2005Optical Properties of Nanoparticle-based Metallodielectric Inverse Opalscitations
Places of action
Organizations | Location | People |
---|
article
Tuning particle biodegradation through polymer-peptide blend composition
Abstract
<p>We report the preparation of polymer-peptide blend replica particles via the mesoporous silica (MS) templated assembly of poly(ethylene glycol)-block-poly(2-diisopropylaminoethyl methacrylate-co-2-(2-(2-(prop-2-ynyloxy)ethoxy)ethoxy)ethyl methacrylate) (PEG<sub>45</sub>-b-P(DPA<sub>55</sub>-co-PgTEGMA<sub>4</sub>)) and poly(l-histidine) (PHis). PEG<sub>45</sub>-b-P(DPA<sub>55</sub>-co-PgTEGMA<sub>4</sub>) was synthesized by atom transfer radical polymerization (ATRP), and was coinfiltrated with PHis into poly(methacrylic acid) (PMA)-coated MS particles assembled from different peptide-to-polymer ratios (1:1, 1:5, 1:10, or 1:15). Subsequent removal of the sacrificial templates and PMA resulted in monodisperse, colloidally stable, noncovalently cross-linked polymer-peptide blend replica particles that were stabilized by a combination of hydrophobic interactions between the PDPA and the PHis, hydrogen bonding between the PEG and PHis backbone, and π-π stacking of the imidazole rings of PHis side chains at physiological pH (pH ∼ 7.4). The synergistic charge-switchable properties of PDPA and PHis, and the enzymatic degradability of PHis, make these particles responsive to pH and enzymes. In vitro studies, in simulated endosomal conditions and inside cells, demonstrated that particle degradation kinetics could be engineered (from 2 to 8 h inside dendritic cells) based on simple adjustment of the peptide-to-polymer ratio used.</p>