Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kosilkin, Ilya

  • Google
  • 3
  • 16
  • 125

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2011Systematic nanoengineering of soft matter organic electro-optic materials125citations
  • 2010Definition of critical structure/function relationships and integration issues for organic electro-optic materialscitations
  • 2010Organic electro-optic materialscitations

Places of action

Chart of shared publication
Jr., Daniel B. Knorr
1 / 1 shared
Eichinger, Bruce E.
2 / 4 shared
Benight, Stephanie J.
1 / 1 shared
Robinson, Bruce H.
3 / 6 shared
Johnson, Lewis E.
1 / 1 shared
Dalton, Larry R.
3 / 10 shared
Overney, René M.
1 / 2 shared
Bale, Denise H.
1 / 1 shared
Benight, Stephanie
2 / 3 shared
Sullivan, Philip
1 / 3 shared
Grote, James G.
1 / 5 shared
Eichinger, Bruce
1 / 3 shared
Davies, Joshua
1 / 2 shared
Sullivan, Philip A.
1 / 3 shared
Olbricht, Benjamin
1 / 1 shared
Bale, Denise
1 / 2 shared
Chart of publication period
2011
2010

Co-Authors (by relevance)

  • Jr., Daniel B. Knorr
  • Eichinger, Bruce E.
  • Benight, Stephanie J.
  • Robinson, Bruce H.
  • Johnson, Lewis E.
  • Dalton, Larry R.
  • Overney, René M.
  • Bale, Denise H.
  • Benight, Stephanie
  • Sullivan, Philip
  • Grote, James G.
  • Eichinger, Bruce
  • Davies, Joshua
  • Sullivan, Philip A.
  • Olbricht, Benjamin
  • Bale, Denise
OrganizationsLocationPeople

article

Organic electro-optic materials

  • Davies, Joshua
  • Sullivan, Philip A.
  • Olbricht, Benjamin
  • Eichinger, Bruce E.
  • Benight, Stephanie
  • Kosilkin, Ilya
  • Robinson, Bruce H.
  • Dalton, Larry R.
  • Bale, Denise
Abstract

Time-dependent density functional theory quantum mechanical and pseudo-atomistic Monte Carlo statistical mechanical computations are used to guide the systematic improvement of organic electro-optic materials. In particular, the dependence of molecular first hyperpolarizability upon dielectric permittivity and optical frequency is defined as is the dependence of electric field poling-induced acentric order on a variety of intermolecular electrostatic interactions. A number of measurement techniques are used to obtain independent test of theoretical predictions of chromophore order. The conclusion of these studies is that electro-optic activity of even complex materials (multi-chromophore-containing dendrimers and composite materials containing several types of chromophores, i.e., binary chromophore organic glasses) can be predicted from first principles theory. Laser-assisted electric field poling applied to a binary chromophore organic glass is used to provided an additional test of theory. © 2010 American Chemical Society.

Topics
  • density
  • impedance spectroscopy
  • theory
  • glass
  • glass
  • composite
  • density functional theory
  • dendrimer