Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Espinosa-Alonso, L.

  • Google
  • 1
  • 2
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Profiling Physicochemical Changes within Catalyst Bodies during Preparation36citations

Places of action

Chart of shared publication
Beale, A. M.
1 / 6 shared
Weckhuysen, Bm Bert
1 / 46 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Beale, A. M.
  • Weckhuysen, Bm Bert
OrganizationsLocationPeople

article

Profiling Physicochemical Changes within Catalyst Bodies during Preparation

  • Espinosa-Alonso, L.
  • Beale, A. M.
  • Weckhuysen, Bm Bert
Abstract

Cylindrical or spherical catalyst bodies with sizes ranging from tens of micrometers to a few millimeters have a wide variety of industrial applications. They are crucial in the oil refining industry and in the manufacture of bulk and fine chemicals. Their stability, activity, and selectivity are largely dependent on their preparation; thus, achieving the optimum catalyst requires a perfect understanding of the physicochemical processes occurring in a catalyst body during its synthesis.The ultimate goal of the catalyst researcher is to visualize these physicochemical processes as the catalyst is being prepared and without interfering with the system. In order to understand this chemistry and improve catalyst design, researchers need better, less invasive tools to observe this chemistry as it occurs, from the first stages in contact with a precursor all the way through its synthesis. In this Account, we provide an overview of the recent advances in the development of space- and time-resolved spectroscopic methods, from invasive techniques to noninvasive ones, to image the physicochemical processes taking place during the preparation of catalyst bodies.Although several preparation methods are available to produce catalyst bodies, the most common method used in industry is the incipient wetness impregnation. It is the most common method used in industry because it is simple and cost-effective. This method consists of three main steps each of which has an important role in the design of a catalytic material: pore volume impregnation, drying, and thermal treatment. During the impregnation step, the interface between the support surface and the precursor of the active phase at the solid liquid interface is where the critical synthetic chemistry occurs. Gas solid and solid solid interfaces are critical during the drying and thermal treatment steps. Because of the length scale of these catalyst bodies, the interfacial chemistry that occurs during preparation is space-dependent. Different processes occurring in the core or in the outer rim of the catalytic solid are enhanced by several factors, such as the impregnation solution pH, the metal ion concentration, the presence of organic additives, and the temperature gradients inside the body.Invasive methods for studying the molecular nature of the metal-ion species during the preparation of catalyst bodies include Raman, UV-vis-NIR, and IR microspectroscopies. Noninvasive techniques include magnetic resonance imaging (MRI). Synchrotron-based techniques such as tomographic energy dispersive diffraction imaging (TEDDI) and X-ray microtomography for noninvasive characterization are also evaluated.

Topics
  • impedance spectroscopy
  • pore
  • surface
  • phase
  • laser emission spectroscopy
  • drying